Carboxyl pK(a) values, ion pairs, hydrogen bonding, and the pH-dependence of folding the hyperthermophile proteins Sac7d and Sso7d.

J Mol Biol

Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA. Electronic address:

Published: September 2007

Sac7d and Sso7d are homologous, hyperthermophile proteins with a high density of charged surface residues and potential ion pairs. To determine the relative importance of specific amino acid side-chains in defining the stability and function of these Archaeal chromatin proteins, pK(a) values were measured for the acidic residues in both proteins using (13)C NMR chemical shifts. The stability of Sso7d enabled titrations to pH 1 under low-salt conditions. Two aspartate residues in Sso7d (D16 and D35) and a single glutamate residue (G54) showed significantly perturbed pK(a) values in low salt, indicating that the observed pH-dependence of stability was primarily due to these three residues. The pH-dependence of backbone amide NMR resonances demonstrated that perturbation of all three pK(a) values was primarily the result of side-chain to backbone amide hydrogen bonds. Few of the significantly perturbed acidic pK(a) values in Sac7d and Sso7d could be attributed to primarily ion pair or electrostatic interactions. A smaller perturbation of E48 (E47 in Sac7d) was ascribed to an ion pair interaction that may be important in defining the DNA binding surface. The small number (three) of significantly altered pK(a) values was in good agreement with a linkage analysis of the temperature, pH, and salt-dependence of folding. The linkage of the ionization of two or more side-chains to protein folding led to apparent cooperativity in the pH-dependence of folding, although each group titrated independently with a Hill coefficient near unity. These results demonstrate that the acid pH-dependence of protein stability in these hyperthermophile proteins is due to independent titration of acidic residues with pK(a) values perturbed primarily by hydrogen bonding of the side-chain to the backbone. This work demonstrates the need for caution in using structural data alone to argue the importance of ion pairs in stabilizing hyperthermophile proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2083566PMC
http://dx.doi.org/10.1016/j.jmb.2007.06.089DOI Listing

Publication Analysis

Top Keywords

pka values
28
hyperthermophile proteins
16
ion pairs
12
sac7d sso7d
12
hydrogen bonding
8
ph-dependence folding
8
acidic residues
8
backbone amide
8
side-chain backbone
8
ion pair
8

Similar Publications

Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).

View Article and Find Full Text PDF

An acidic shift in the pH profile of zearalenone hydrolase (ZHD), the most effective and well-studied zearalenone-specific lactone hydrolase, is required to extend the range of applications for the enzyme as a decontamination agent in the feed and food production industries. Amino acid substitutions were engineered in the active center of the enzyme to decrease the pKa values of the catalytic residues E126 and H242. The T216K substitution provided a shift in the pH optimum by one unit to the acidic region, accompanied by a notable expansion in the pH profile under acidic conditions.

View Article and Find Full Text PDF

Purpose: The purpose of this work was to establish national Irish diagnostic reference levels (DRLs) for a clinically representative and comprehensive list of clinical indications, anatomical regions, and common procedures for fluoroscopy and fluoroscopically guided interventions and compare these, where possible, to other DRLs established at a national level.

Method: A list of clinical indications, anatomical regions and common procedures was established. A national database of service providers was used to identify all medical radiological facilities providing fluoroscopy and fluoroscopically guided intervention services.

View Article and Find Full Text PDF

Machine learning has emerged as a promising approach for predicting molecular properties of proteins, as it addresses limitations of experimental and traditional computational methods. Here, we introduce GSnet, a graph neural network (GNN) trained to predict physicochemical and geometric properties including solvation free energies, diffusion constants, and hydrodynamic radii, based on three-dimensional protein structures. By leveraging transfer learning, pre-trained GSnet embeddings were adapted to predict solvent-accessible surface area (SASA) and residue-specific p values, achieving high accuracy and generalizability.

View Article and Find Full Text PDF

The presence of multiple hydroxyl groups at positions C2, C3 and C6 on the cyclodextrin (CD) ring structure allows for extensive functionalisation, enabling the development of biomaterials with significant potential for therapeutic siRNA delivery. To identify structural modifications that enhance activity, a range of cationic amphiphilic CDs, including both β- and γ-CDs, were synthesised, compared and evaluated. Each CDs incorporated a C lipid chain on the primary face of the CD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!