Brain edema is the most life-threatening complication that occurs as a result of a number of insults to the brain. However, its therapeutic options are insufficiently effective. We have recently found that administration of pigment epithelium-derived factor (PEDF) inhibits retinal hyperpermeability in rats by counteracting biological effects of vascular endothelial growth factor (VEGF). In this study, we investigated whether PEDF could inhibit cold injury-induced brain edema in mice. Cold injury was induced by applying a pre-cooled metal probe on the parietal skull. VEGF and its receptor Flk-1 gene and/or protein expressions were up-regulated in the cold-injured brain. Cold injury induced brain edema, which was reduced by intraperitoneal injection of VEGF antibodies (Abs) or apocynin, an inhibitor of NADPH oxidase. PEDF mRNA and protein levels were up-regulated in response to cold injury. PEDF dose-dependently inhibited the brain edema, whose effect was neutralized by simultaneous treatments with anti-PEDF Abs. Although VEGF and Flk-1 gene and/or protein expressions were not suppressed by PEDF, PEDF or anti-VEGF Abs inhibited the cold injury-induced NADPH oxidase activity in the brain. Further, PEDF treatment inhibited activation of Rac-1, an essential component of NADPH oxidase in the cold-injured brain, while it did not affect mRNA levels of gp91phox, p22phox, or Rac-1. These results demonstrate that PEDF could inhibit the cold injury-induced brain edema by blocking the VEGF signaling to hyperpermeability through the suppression of NADPH oxidase via inhibition of Rac-1 activation. Our present study suggests that PEDF may be a novel therapeutic agent for the treatment of brain edema.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2007.04.088DOI Listing

Publication Analysis

Top Keywords

brain edema
28
cold injury-induced
16
nadph oxidase
16
injury-induced brain
12
cold injury
12
brain
11
pedf
10
administration pigment
8
pigment epithelium-derived
8
epithelium-derived factor
8

Similar Publications

Objective: To apply a network medicine-based approach to analyze the phenome of the prenatal fetal MRI and biometric findings in the Chiari II malformation (CM II) to detect specific patterns and co-occurrences.

Method: A single-center retrospective review of fetal MRI scans obtained in fetuses with CM II was performed. Co-occurrence analysis was utilized to generate a phenotypic comorbidity matrix and visualized by Gephi software.

View Article and Find Full Text PDF

Purpose: To report the clinical presentation, treatment course, and outcome of a case of bilateral frosted branch angiitis (FBA) and neuroretinitis associated with acute Epstein-Barr virus (EBV) infection in a pediatric patient with Turner Syndrome.

Methods: Case report with multimodal ocular imaging and extensive systemic workup.

Results: A 16-year-old female with Turner syndrome presented with acute bilateral vision loss, hearing loss, and ataxia.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.

Background: Levels of inflammatory components gradually rise in tissues and blood as we age. This "inflammageing" process is often debilitating and even fatal. Cognitive impairment is one example of inflammageing's incapacitating nature.

View Article and Find Full Text PDF

Background: Anti-amyloid antibodies have been associated with amyloid-related-imaging-abnormalities (ARIA) in AD patients, causing vasogenic edema and microhemorrhages, especially in ApoE4 carriers. Here, we compared recombinant 3D6-L, a murine version of bapineuzumab, and an isotype control IgG2a monoclonal antibody (mAb) to investigate potential mechanisms, including complement activation, involved in these side effects (ARIA-H or microhemorrhages) following passive immunization.

Method: Plaque-rich 16.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Indiana University School of Medicine, Stark Neurosciences Research Institute, Department of Neurology, Indianapolis, IN, USA.

Anti-amyloid immunotherapy holds great promise for our patients and their families as the first disease-modifying therapy for the treatment of Alzheimer's disease (AD) to be approved. Positive clinical trials for lecanamab and donanemab showed significant and rapid lowering of brain amyloid burden and a significant slowing of cognitive decline. Amyloid-related imaging abnormalities (ARIA) in the form of vasogenic edema (ARIA-E) and micro - and macro- hemorrhages (ARIA-H) remain the major obstacle to broad use of these agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!