Peptide fragments from alfalfa mosaic virus involved multiple antigenic components directing and empowering the immune system to protect the host from infection. MHC molecules are cell surface proteins, which take active part in host immune reactions and involvement of MHC class-I & II in response to almost all antigens. Coat protein of alfalfa mosaic virus contains 221 aa residues. Analysis found five MHC ligands in coat protein as 64-LSSFNGLGV-72; 86- RILEEDLIY-94; 96-MVFSITPSY-104; 100- ITPSYAGTF-108; 110- LTDDVTTED-118; having rescaled binding affinity and c-terminal cleavage affinity more than 0.5. The predicted binding affinity is normalized by the 1% fractil. The MHC peptide binding is predicted using neural networks trained on c-terminals of known epitopes. In analysis predicted MHC/peptide binding is a log transformed value related to the IC50 values in nM units. Total numbers of peptides found are 213. Predicted MHC binding regions act like red flags for antigen specific and generate immune response against the parent antigen. So a small fragment of antigen can induce immune response against whole antigen. This theme is implemented in designing subunit and synthetic peptide vaccines. The sequence analysis method allows potential drug targets to identify active sites against plant diseases. The method integrates prediction of peptide MHC class I binding; proteosomal c-terminal cleavage and TAP transport efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/157016307781483441 | DOI Listing |
Biotechnol J
December 2024
Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
Virus-induced gene silencing (VIGS) represents a particularly relevant tool in agricultural species for studying gene functionality. This study presents a novel approach for utilizing viruses belonging to the 30K family of movement proteins (MPs) as VIGS vectors. The method described here employs smaller inserts (54 bp or less) than those commonly used (100-500 bp).
View Article and Find Full Text PDFPlant Dis
December 2024
University of Idaho, EPPN, 875 Perimeter Dr., MS 2329, Moscow, Idaho, United States, 83844-2329;
Alfalfa (Medicago sativa L.) is a commonly grown forage crop in Oregon and California harvested on 350,000 and 480,000 acres, respectively, in 2023 (USDA-NASS 2023). Forage alfalfa is grown as a perennial crop for about four years in the same field and each season, the crop is cut 3-4 times for hay production.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CISC, 46022 Valencia, Spain.
BMC Plant Biol
November 2024
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt.
Background: Nanotechnology has been recognized as a viable technology for enhancing agriculture, particularly in the plant pathogen management area. Alfalfa mosaic virus (AMV) is a global pathogen that affects many plant species, especially economically valuable crops. Currently, there is less data on the interaction of nanoparticles with phytopathogens, particularly viruses.
View Article and Find Full Text PDFPlant Dis
November 2024
Pontificia Universidad Catolica de Chile, Departamento de Ciencias Vegetales, Facultad de Agronomía y Sistemas Naturales, Santiago, RM, Chile;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!