Differences in the expression of cathepsin B in B16 melanoma metastatic variants depend on transcription factor Sp1.

DNA Cell Biol

Program in Molecular Biology, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois 60153, USA.

Published: September 2007

Cathepsin B contributes to the invasiveness of B16 melanoma cells in mice, with the highly metastatic B16a melanoma producing six- to eightfold more cathepsin B mRNA and protein than the less metastatic B16F1 variant. The proximal promoter region of the cathepsin B (Ctsb) gene (-149 to +94) was previously found to be capable of reproducing this pattern of differential gene activation in B16 melanoma variants. The binding of B16 melanoma nuclear proteins to this promoter region has now been mapped to three GC-boxes (Sp1 transcription factor binding sites) and a potential X-box [tax response element (TRE)/c-AMP responsive element (CRE) site]. Mutation of the GC-boxes at -55 and -37 independently decreased the expression of a luciferase reporter gene in B16a cells to the level observed in B16F1 cells. Promoter activity was also attenuated by mutations within the GC-rich segment between +6 and +16, but not by mutation of the putative X-box. Both Sp1 and Sp3 bound the GC-boxes in the Ctsb promoter, and western blotting showed the level of Sp1 to be greater in B16a compared to B16F1 cells. B16F1 cells that were made to express Sp1 at levels observed in B16a cells produced corresponding increased amounts of endogenous cathepsin B mRNA and enzyme activity. Thus, the difference in cathepsin B expression between high and low metastatic B16 melanoma variants is largely due to different levels of Sp1.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2007.0580DOI Listing

Publication Analysis

Top Keywords

b16 melanoma
20
b16f1 cells
12
transcription factor
8
cathepsin mrna
8
promoter region
8
melanoma variants
8
b16a cells
8
cathepsin
6
melanoma
6
sp1
6

Similar Publications

Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.

View Article and Find Full Text PDF

Gastric cancer (GC), one of the tumours with the highest mortality worldwide, is not a homogeneous disease, showing different features according to location, macroscopic aspect, histotype and molecular alterations. Adenocarcinoma is the most frequent epithelial GC (95%), the remaining 5% comprising rare epithelial tumours with their peculiarities, behaviour and incidence <6 cases/100,000/year. Due to the low number of cases, many aspects must be elucidated in this context.

View Article and Find Full Text PDF

In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1.

View Article and Find Full Text PDF

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

Melanoma extracellular vesicles membrane coated nanoparticles as targeted delivery carriers for tumor and lungs.

Mater Today Bio

February 2025

Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy.

Targeting is the most challenging problem to solve for drug delivery systems. Despite the use of targeting units such as antibodies, peptides and proteins to increase their penetration in tumors the amount of therapeutics that reach the target is very small, even with the use of nanoparticles (NPs). Nature has solved the selectivity problem using a combination of proteins and lipids that are exposed on the cell membranes and are able to recognize specific tissues as demonstrated by cancer metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!