Fapy.dG is produced in DNA as a result of oxidative stress from a precursor that also forms OxodG. Bypass of Fapy.dG in a shuttle vector in COS-7 cells produces G --> T transversions slightly more frequently than does OxodG (Kalam, M. A., et al. (2006) Nucleic Acids Res. 34, 2305). The effect of Fapy.dG on replication in Escherichia coli was studied by transfecting M13mp7(L2) bacteriophage DNA containing the lesion within the lacZ gene in 4 local sequence contexts. For comparison, experiments were carried out side-by-side on OxodG. The efficiency of lesion bypass was determined relative to that of a genome containing native nucleotides. Fapy.dG was bypassed less efficiently than OxodG. Bypass efficiency of Fapy.dG and OxodG increased modestly in SOS-induced cells. Mutation frequencies at the site of the lesions in the originally transfected genomes were determined using the REAP assay (Delaney, J. C., Essigmann, J. M. (2006) Methods Enzymol. 408, 1). G --> T transversions were the only mutations observed above background when either Fapy.dG or OxodG was bypassed. OxodG mutation frequencies ranged from 3.1% to 9.8%, whereas the G --> T transversion frequencies observed upon Fapy.dG bypass were
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi700628c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!