Stochastic fluctuations and chiral symmetry breaking: exact solution of Lente model.

J Phys Chem A

College of Chemistry, Beijing Normal University, Beijing 100875, China.

Published: September 2007

The stochastic description for the autocatalytic process has been proposed by Lente (J. Phys. Chem. A 2004, 108, 9475) to demonstrate chiral symmetry breaking. He assumed that the number of reacting molecules is macroscopic and that no products are present initially. The Lente model consisting of a finite number of molecules that may include the product molecules as chiral seeds is explored and the characteristics of stochastic distributions of the product are examined. It is shown that the presence of racemic product in the substrate reduces the possibility of chiral symmetry breaking while a few more molecules of a specific enantiomer added can yield chiral dominance for strong autocatalysis. Besides, small reactive volumes or dense reactant concentrations have a preference for chiral symmetric breaking.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0739364DOI Listing

Publication Analysis

Top Keywords

chiral symmetry
12
symmetry breaking
12
lente model
8
chiral
6
stochastic fluctuations
4
fluctuations chiral
4
breaking
4
breaking exact
4
exact solution
4
solution lente
4

Similar Publications

Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.

View Article and Find Full Text PDF

Chirality, a pervasive form of symmetry, is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, inducing chirality in a nonchiral material is challenging because this requires that all mirrors and all roto-inversions be simultaneously broken. Here, we show that chirality of either handedness can be induced in the nonchiral piezoelectric material boron phosphate (BPO) by irradiation with terahertz pulses.

View Article and Find Full Text PDF

Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP.

View Article and Find Full Text PDF

Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, -symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase.

View Article and Find Full Text PDF

Magnetophononics and the chiral phonon misnomer.

PNAS Nexus

January 2025

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!