Although some isoprenoids, such as taxans and geranylgeraniol (GGOH), have been reported to have strong anticancer activities, the effect of plaunotol, the isoprenoid extracted from the leaves of Plau-noi, on cancer has not yet been evaluated. Here, we aimed to investigate the effect of plaunotol on gastric cancer cell lines. Three gastric cancer cell lines, namely MKN-45, MKN-74 and AZ-521 were used. Plaunotol was tested at 10, 20, 30 and 40 micromol/L. Plaunotol dose-dependently inhibited the growth of all gastric cancer cells, dependent on the induction of apoptosis. Caspases-8, -9 and -3, were found to be activated in the apoptotic cells. The expression of Bax protein was increased, but Bcl-2 and Bcl-xL protein expressions were not significantly affected. Plaunotol should be a promising new antitumor agent, and since it is already available for clinical use in Japan, its anticancer properties should be confirmed in clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2007-981578 | DOI Listing |
J Clin Invest
January 2025
Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.
Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.
Ann Surg Oncol
January 2025
Division of General Surgery, Department of Biomedical Science for Health, IRCCS Galeazzi - Sant'Ambrogio Hospital, I.R.C.C.S. Ospedale Galeazzi - Sant'Ambrogio, University of Milan, Milan, Italy.
Ann Surg Oncol
January 2025
Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.
Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.
Mol Biol Rep
January 2025
Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Background: The methyltransferase gene family is known for its diverse biological functions and critical role in tumorigenesis. This study aimed to identify these family genes in common gastrointestinal (GI) cancers using comprehensive methodologies.
Methods: Gene identification involved analysis of scientific literature and insights from The Cancer Genome Atlas (TCGA) database.
Langmuir
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!