Objective To observe the activating effect of ciliary neurotrophic factor (CNTF) on astrocyte in vitro. Methods Astrocytes cultured purely from newborn rats. Cerebral cortex was raised in normal and serum deprivation condition with different concentrations (in ng/ml: 0, 2, 20, or 200) of CNTF. After cultured for 24 h, the shape and the cell cycle of astrocytes were examined by immunocytochemistry and flow cytometer, respectively. Results The immunoactivity of glial fibrillary acidic protein (GFAP) and the nuclear size of astrocytes were increased when CNTF was applied, whether cells were cultured in medium with or without serum. CNTF promoted astrocytes to enter the cell cycle in medium with serum, but had no this effect in medium without serum. Conclusion In medium without serum, astrocytes could differentiate into activated state cells with CNTF application, but could not proliferate; in medium with serum, astrocytes could proliferate with aid of CNTF.
Download full-text PDF |
Source |
---|
Tissue Eng Regen Med
January 2025
Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea.
Introduction: , primary rat oligodendrocytes (OLs) are widely used for research on OL development, physiology, and pathophysiology in demyelinating diseases such as multiple sclerosis. Primary culture methods for OLs from rats have been developed and improved over time, but there are still multiple aspects in which efficiency can be boosted.
Methods: To make use of excess oligodendrocyte progenitor cells (OPCs) from primary cultures, a cryopreservation process utilizing a commercially available serum-free cryopreservation medium was established to passage and freeze OPCs at -80°C for later use.
Cell Signal
January 2025
Clinic School of Medicine and Affiliated Hospital, North China University of Science and Technology, Tangshan, China. Electronic address:
Purpose: This study aims to investigate whether zinc ion (Zn) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload.
Methods: H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn treatment in a complete medium.
Introduction: Adverse exposures in utero might cause adaptations of cardiovascular and metabolic organ development, predisposing individuals to an adverse cardio-metabolic risk profile from childhood onwards. We hypothesized that adaptations in metabolic pathways underlie these associations and examined associations of metabolite profiles at birth with childhood cardio-metabolic risk factors.
Methods: The study included 763 mother-child pairs participating in an ongoing population-based prospective cohort study with an overall low disease risk.
ACS Omega
January 2025
Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil.
Zika (ZIKV) and Dengue (DENV) viruses are clinically significant due to their severe neurological and hemorrhagic complications. Rapid diagnostics often rely on nonstructural proteins to generate specific antibodies. This study aimed to produce IgG antibodies from the recombinant ZIKV protein and plant-expressed NS2B protein for arbovirus detection in serum and urine samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!