The production of mature functional T cells in the thymus requires signals from the thymic epithelium. Here, we review recent experiments showing that one way in which the epithelium controls the production of mature T cells is by the secretion of sonic hedgehog (SHH). We consider the increasing evidence that SHH-induced signalling is not only important for the differentiation and proliferation of early thymocyte progenitors, but also for modulating T-cell receptor signalling during repertoire selection, with implications for positive selection, CD4 versus CD8 lineage commitment, and clonal deletion of autoreactive cells. We also review the influence of hedgehog signalling in peripheral T-cell activation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nri2151DOI Listing

Publication Analysis

Top Keywords

sonic hedgehog
8
hedgehog signalling
8
production mature
8
signalling
4
signalling t-cell
4
t-cell development
4
development activation
4
activation production
4
mature functional
4
functional cells
4

Similar Publications

Shh Protects the Injured Spinal Cord in Mice by Promoting the Proliferation and Inhibiting the Apoptosis of Nerve Cells via the Gli1-TGF-β1/ERK Axis.

Cell Biochem Funct

January 2025

Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.

View Article and Find Full Text PDF

Introduction: Ischemic stroke greatly threatens human life and health. Neuro-restoration is considered to be the critical points in reestablishing neurological function and improving the quality of life of patients. Catalpol is the main active ingredient of the Chinese herbal medicine , which has the beneficial efficacy in traditional remedy, is closely related to the mitochondrial morphology and function.

View Article and Find Full Text PDF

Novel inhibitory effect of Omega-3 fatty acids regulating pancreatic cancer progression.

Carcinogenesis

January 2025

Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina.

Pancreatic cancer is a devastating malignancy in great need of new and more effective treatment approaches. In recent years, studies have indicated that nutritional interventions, particularly nutraceuticals, may provide novel avenues to modulate cancer progression. Here, our study characterizes the impact of ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as a nutraceutical intervention in pancreatic cancer using a genetically engineered mouse model driven by KrasG12D and Trp53R172H.

View Article and Find Full Text PDF

Melatonin (MT), an endogenous hormone secreted by pineal gland, has the sedative, anti-inflammatory and antioxidant functions. However, there are few studies on whether MT affects the proliferation and differentiation of antler chondrocytes. The present study investigated the influences of MT on the proliferation and differentiation of antler chondrocytes, explored its regulation on runt-related transcription factor 2 (RUNX2), NOTCH1 and sonic hedgehog (SHH) signaling, and elucidated their interplays.

View Article and Find Full Text PDF

The role of sonic hedgehog signaling in the oropharyngeal epithelium during jaw development.

Congenit Anom (Kyoto)

December 2024

Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.

Sonic hedgehog (Shh) is expressed in the oropharyngeal epithelium, including the frontonasal ectodermal zone (FEZ), which is defined as the boundary between Shh and Fgf8 expression domains in the frontonasal epithelium. To investigate the role of SHH signaling from the oropharyngeal epithelium, we generated mice in which Shh expression is specifically deleted in the oropharyngeal epithelium (Isl1-Cre; Shh). In the mutant mouse, Shh expression was excised in the oropharyngeal epithelium as well as FEZ and ventral forebrain, consistent with the expression pattern of Isl1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!