Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The prefrontal cortex is necessary for directing thought and planning action. Working memory, the active, transient maintenance of information in mind for subsequent monitoring and manipulation, lies at the core of many simple, as well as high-level, cognitive functions. Working memory has been shown to be compromised in a number of neurological and psychiatric conditions and may contribute to the behavioral and cognitive deficits associated with these disorders. It has been theorized that working memory depends upon reverberating circuits within the prefrontal cortex and other cortical areas. However, recent work indicates that intracellular signals and protein dephosphorylation are critical for working memory. The present article will review recent research into the involvement of the modulatory neurotransmitters and their receptors in working memory. The intracellular signaling pathways activated by these receptors and evidence that indicates a role for G(q)-initiated PI-PLC and calcium-dependent protein phosphatase calcineurin activity in working memory will be discussed. Additionally, the negative influence of calcium- and cAMP-dependent protein kinase (i.e., calcium/calmodulin-dependent protein kinase II (CaMKII), calcium/diacylglycerol-activated protein kinase C (PKC), and cAMP-dependent protein kinase A (PKA)) activities on working memory will be reviewed. The implications of these experimental findings on the observed inverted-U relationship between D(1) receptor stimulation and working memory, as well as age-associated working memory dysfunction, will be presented. Finally, we will discuss considerations for the development of clinical treatments for working memory disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1101/lm.558707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!