Carbonic anhydrase II and alveolar fluid reabsorption during hypercapnia.

Am J Respir Cell Mol Biol

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Published: January 2008

Carbonic anhydrase II (CAII) plays an important role in carbon dioxide metabolism and intracellular pH regulation. In this study, we provide evidence that CAII is expressed in both type I (AECI) and type II (AECII) alveolar epithelial cells by RT-PCR and Western blotting in freshly isolated rat cells. These results were further confirmed by double immunostaining with CAII antibodies and AECI- or AECII-specific markers in freshly isolated alveolar epithelial cells and rat lung tissues. Inhibition of CAII by acetazolamide or methazolamide delayed the decrease in the intracellular pH observed during hypercapnia in cultured AECI, AECII, and AECI-like cells. In an isolated-perfused rat lung model, alveolar fluid reabsorption significantly decreased during high CO(2) exposure, which was not prevented by carbonic anhydrase inhibition. Thus, we provide evidence that CAII is expressed in rat alveolar epithelial cells and does not regulate lung alveolar fluid reabsorption during hypercapnia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2176133PMC
http://dx.doi.org/10.1165/rcmb.2007-0121OCDOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
12
alveolar fluid
12
fluid reabsorption
12
alveolar epithelial
12
epithelial cells
12
reabsorption hypercapnia
8
provide evidence
8
evidence caii
8
caii expressed
8
freshly isolated
8

Similar Publications

Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.

View Article and Find Full Text PDF

Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond.

Arch Pharm (Weinheim)

January 2025

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

For large, open-air lithic cultural heritage, colonization is an inevitable process. This study examines the dual impact of colonization on the Leshan Giant Buddha's sandstone monuments, focusing on both biodeterioration and protection. Over three years, we conducted field surveys and monitored biocrusts (bryophytes, lichens, and biofilms) on these monuments, observing significant biodeterioration primarily due to mechanical exfoliation and acid corrosion.

View Article and Find Full Text PDF

Identification and characterization of interacting proteins of transcription factor DpWRI1-like related to lipid biosynthesis from microalga .

Heliyon

January 2025

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China.

Our previous study found that WRINKLED1-like (DpWRI1-like) was a key regulatory factor of lipid biosynthesis in . gene and target genes of DpWRI1-like have been obtained in our previous study, but the interacting proteins of DpWRI1-like are unclear now, which has limited a deep understanding of the function of DpWRI1-like. Yeast two-hybrid was widely used to identify protein-protein interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!