Huntington's disease (HD) is a neurodegenerative disorder that, unlike most autosomal dominant disorders, is not being selected against. One explanation for the maintenance of the mutant HD allele is that it is transparent to natural selection because disease symptoms typically occur subsequent to an individual's peak reproductive years. While true, this observation does not explain the population-level increase in HD. The increase in HD is at least partly the result of enhanced fitness: HD+ individuals have more offspring than unaffected relatives. This phenomenon has previously been explained as the result of elevated promiscuity of HD+ individuals. For this to be true, disease symptoms must be expressed during the otherwise asymptomatic peak reproductive years and promiscuity must increase offspring production; however, neither prediction is supported by data. Instead, new data suggest that the mutant HD allele bestows health benefits on its carriers. HD+ individuals show elevated levels of the tumor suppressor protein p53 and experience significantly less cancer than unaffected siblings. We hypothesize that the mutant HD allele elevates carriers' immune activity and thus HD+ individuals are, on average, healthier than HD- individuals during reproductive years. As health and reproductive output are positively related, data suggest a counterintuitive relationship: health benefits may lead to an increased prevalence of Huntington's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2007.02.046DOI Listing

Publication Analysis

Top Keywords

hd+ individuals
16
huntington's disease
12
health benefits
12
mutant allele
12
reproductive years
12
disease symptoms
8
peak reproductive
8
disease
5
individuals
5
darwinian approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!