Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis.

J Physiol Paris

UMR5167 CNRS, Faculté de Médecine Laennec, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7, Rue Guillaume Paradin, 69372 Lyon cedex 08, France.

Published: January 2008

In the middle of the last century, Michel Jouvet discovered paradoxical sleep (PS), a sleep phase paradoxically characterized by cortical activation and rapid eye movements and a muscle atonia. Soon after, he showed that it was still present in "pontine cats" in which all structures rostral to the brainstem have been removed. Later on, it was demonstrated that the pontine peri-locus coeruleus alpha (peri-LCalpha in cats, corresponding to the sublaterodorsal nucleus, SLD, in rats) is responsible for PS onset. It was then proposed that the onset and maintenance of PS is due to a reciprocal inhibitory interaction between neurons presumably cholinergic specifically active during PS localized in this region and monoaminergic neurons. In the last decade, we have tested this hypothesis with our model of head-restrained rats and functional neuroanatomical studies. Our results confirmed that the SLD in rats contains the neurons responsible for the onset and maintenance of PS. They further indicate that (1) these neurons are non-cholinergic possibly glutamatergic neurons, (2) they directly project to the glycinergic premotoneurons localized in the medullary ventral gigantocellular reticular nucleus (GiV), (3) the main neurotransmitter responsible for their inhibition during waking (W) and slow wave sleep (SWS) is GABA rather than monoamines, (4) they are constantly and tonically excited by glutamate and (5) the GABAergic neurons responsible for their tonic inhibition during W and SWS are localized in the deep mesencephalic reticular nucleus (DPMe). We also showed that the tonic inhibition of locus coeruleus (LC) noradrenergic and dorsal raphe (DRN) serotonergic neurons during sleep is due to a tonic GABAergic inhibition by neurons localized in the dorsal paragigantocellular reticular nucleus (DPGi) and the ventrolateral periaqueductal gray (vlPAG). We propose that these GABAergic neurons also inhibit the GABAergic neurons of the DPMe at the onset and during PS and are therefore responsible for the onset and maintenance of PS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphysparis.2007.05.006DOI Listing

Publication Analysis

Top Keywords

responsible onset
12
onset maintenance
12
reticular nucleus
12
gabaergic neurons
12
neurons
10
sld rats
8
neurons responsible
8
tonic inhibition
8
sleep
5
responsible
5

Similar Publications

Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging.

View Article and Find Full Text PDF

Background/objectives: The gene is responsible for autosomal recessive non-syndromic sensorineural hearing loss and is assigned as DFNB18B. To date, 44 causative variants have been reported to cause non-syndromic hearing loss. However, the detailed clinical features for -associated hearing loss remain unclear.

View Article and Find Full Text PDF

Congenital heart disease (CHD) represents the major cause of infant mortality related to congenital anomalies globally. The etiology of CHD is mostly multifactorial, with environmental determinants, including maternal exposure to ambient air pollutants, assumed to contribute to CHD development. While particulate matter (PM) is responsible for millions of premature deaths every year, overall ambient air pollutants (PM, nitrogen and sulfur dioxide, ozone, and carbon monoxide) are known to increase the risk of adverse pregnancy outcomes.

View Article and Find Full Text PDF

The influence of halogen-mediated interactions on halogen abstraction reactions by formyl radicals.

Phys Chem Chem Phys

January 2025

Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain.

This article reports a theoretical study on the halogen exchange reactions YX + CHO → Y + XCHO (with Y = F, Cl, Br; X = Cl, Br, I) carried out at a high level of accuracy using coupled-cluster based methodologies including CCSD(T)-F12, CCSD(T)/CBS and CCSDT(Q). Most of the reactions are exothermic at room temperature, with the exception of the reactions FI + CHO → F + ICHO and ClI + CHO → Cl + ICHO. Exothermicity follows two concurrent trends established by the strength of the bonds being cleaved and formed: Y = F < Cl < Br (X-Y bond strength) and X = Cl > Br > I (C-X bond strength).

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) represents a prevalent form of focal epilepsy that often requires surgical intervention and can be resistant to antiseizure medications. Its epidemiology varies across regions due to diagnostic challenges and underestimation of individual neurological traits. Despite these complexities, TLE accounts for a significant proportion of total epilepsies worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!