MARCKS-like protein, a membrane protein identified for its expression in developing neural retina, plays a role in regulating retinal cell proliferation.

Biochem J

Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan.

Published: November 2007

AI Article Synopsis

Article Abstract

Membrane proteins are expressed in a specific manner in developing tissues, and characterization of these proteins is valuable because it allows them to be used as cell surface markers. Furthermore, they are potentially important for the regulation of organogenesis because some may participate in signal transduction. In the present study, we used proteomics to examine the comprehensive protein expression profile of the membrane fraction in the embryonic and adult mouse retina. We purified the retinal membrane fraction by sucrose-density-gradient centrifugation and analysed total proteins using shotgun analysis on a nanoflow LC-MS/MS (liquid chromatography tandem MS) system. Approximately half of the 326 proteins from the adult retina and a quarter of the 310 proteins from the embryonic retina (day 17) appeared to be membrane-associated proteins. Among these, MLP [MARCKS (myristoylated alanine-rich C-kinase substrate)-like protein], which shares approx. 50% amino acid identity with MARCKS, was selected for further characterization. The mRNA and surface protein expression of MLP decreased as retinal development progressed. Overexpression of MLP by retrovirus-mediated gene transfer enhanced the proliferation of retinal progenitor cells without affecting differentiation or cell migration in a retinal explant culture system. In contrast, MLP overexpression did not promote proliferation in fibroblasts (NIH 3T3 cells). Mutation analysis of MLP demonstrated that myristoylation was necessary to promote proliferation and that phosphorylation inhibited proliferation, indicating the functional importance of membrane localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2049077PMC
http://dx.doi.org/10.1042/BJ20070826DOI Listing

Publication Analysis

Top Keywords

protein expression
8
membrane fraction
8
promote proliferation
8
proteins
6
membrane
5
retinal
5
proliferation
5
mlp
5
marcks-like protein
4
protein membrane
4

Similar Publications

Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt.

Plant Physiol Biochem

December 2024

College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:

With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.

View Article and Find Full Text PDF

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

Purpose: Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) protein overexpression is an emerging biomarker in gastric cancer and gastroesophageal junction cancer (GC). We assessed FGFR2b protein overexpression prevalence in nearly 3,800 tumor samples as part of the prescreening process for a global phase III study in patients with newly diagnosed advanced or metastatic GC.

Methods: As of June 28, 2024, 3,782 tumor samples from prescreened patients from 37 countries for the phase III FORTITUDE-101 trial (ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!