Adaptive amplification.

Crit Rev Biochem Mol Biol

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.

Published: October 2007

Modern techniques are revealing that repetition of segments of the genome, called amplification or gene amplification, is very common. Amplification is found in all domains of life, and occurs under conditions where enhanced expression of the amplified genes is advantageous. Amplification extends the range of gene expression beyond that which is achieved by control systems. It also is reversible because it is unstable, breaking down by homologous recombination. Amplification is believed to be the driving force in the clustering of related functions, in that it allows them to be amplified together. Amplification provides the extra copies of genes that allow evolution of functions to occur while retaining the original function. Amplification can be induced in response to cellular stressors. In many cases, it has been shown that the genomic regions that are amplified include those genes that are appropriate to upregulate for a specific stressor. There is some evidence that amplification occurs as part of a broad, general stress response, suggesting that organisms have the capacity to induce structural changes in the genome. This then allows adaptation to the stressful conditions. The mechanisms by which amplification arises are now being studied at the molecular level, but much is still unknown about the mechanisms in all organisms. Recent advances in our understanding of amplification in bacteria suggests new interpretations of events leading to human copy number variation, as well as evolution in general.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10409230701507757DOI Listing

Publication Analysis

Top Keywords

amplification
10
adaptive amplification
4
amplification modern
4
modern techniques
4
techniques revealing
4
revealing repetition
4
repetition segments
4
segments genome
4
genome called
4
called amplification
4

Similar Publications

Establishing the protein-protein interaction network sheds light on functional genomics studies by providing insights from known counterparts. However, the rice interactome has barely been studied due to the lack of massive, reliable, and cost-effective methodologies. Here, the development of a barcode-indexed PCR coupled with HiFi long-read sequencing pipeline (BIP-seq) is reported for high throughput Protein Protein Interaction (PPI)identification.

View Article and Find Full Text PDF

Intrachromosomal amplification of chromosome 21 (iAMP21) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in children is a high-risk subtype for which targeted drugs are lacking. In this study, we determined the frequency of secondary lesions in 28 iAMP21 BCP-ALL patient samples and investigated cellular sensitivity for candidate-targeted drugs. iAMP21 was enriched in aberrations (10.

View Article and Find Full Text PDF

Specific and sensitive detection of bovine coronavirus using CRISPR-Cas13a combined with RT-RAA technology.

Front Vet Sci

January 2025

Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China.

Introduction: Bovine coronavirus (BCoV) is an important pathogen of enteric and respiratory disease in cattle, resulting in huge economic losses to the beef and dairy industries worldwide. A specific and sensitive detection assay for BCoV is critical to the early-stage disease prevention and control.

Methods: We established a specific, sensitive, and stable assay for BCoV nucleic acid detection based on CRISPR/Cas13a combined with reverse transcription recombinase-aided amplification (RT-RAA) technology.

View Article and Find Full Text PDF

A two-dimensional fluorescence and chemiluminescence orthogonal probe for discriminating and quantifying similar proteins.

Chem Sci

January 2025

Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Center of Photosensitive Chemicals Engineering, East China University of Science and Technology Shanghai 200237 China

Given that proteins with minor variations in amino acid sequences cause distinct functional outcomes, identifying and quantifying similar proteins is crucial, but remains a long-standing challenge. Herein, we present a two-dimensional orthogonal fluorescence and chemiluminescence design strategy for the probe DCM-SA, which is sequentially activated by albumin-mediated hydrolysis, exhibiting light-up fluorescence and photo-induced cycloaddition generating chemiluminescence, enabling orthogonal signal amplification for discrimination of subtle differences between similar proteins. By orthogonalizing these dual-mode signals, a two-dimensional work curve of fluorescence and chemiluminescence is established to distinguish and quantify similar proteins HSA and BSA.

View Article and Find Full Text PDF

Multi-dimensional bio mass cytometry: simultaneous analysis of cytoplasmic proteins and metabolites on single cells.

Chem Sci

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Single-cell multi-dimensional analysis enables more profound biological insight, providing a comprehensive understanding of cell physiological processes. Due to limited cellular contents, the lack of protein and metabolite amplification ability, and the complex cytoplasmic environment, the simultaneous analysis of intracellular proteins and metabolites remains challenging. Herein, we proposed a multi-dimensional bio mass cytometry platform characterized by protein signal conversion and amplification through an orthogonal exogenous enzymatic reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!