A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The rodent lumbar spinal cord learns to correct errors in hindlimb coordination caused by viscous force perturbations during stepping. | LitMetric

The nervous system can adapt to external forces that perturb locomotion by correcting errors in limb movements. It is believed that supraspinal structures mediate these adaptations, whereas the spinal cord contributes only reflexive responses to perturbations. We examined whether the lumbar spinal cord in postnatal day 5 neonatal spinally transected (ST) rats corrected errors in hindlimb coordination through repetitive exposure to an external perturbation. A robotic device was used to deliver a viscous (velocity-dependent) force that opposed only the forward movement of the ankle in one hindlimb while the ST rats performed hindlimb stepping on a treadmill. We measured the interval between paw contact in the perturbed hindlimb and toe off in the unperturbed hindlimb. Before the force was activated, a normal pattern of coordination occurred: paw contact in the perturbed hindlimb occurred before toe off in the unperturbed hindlimb. This sequence was initially disrupted when the force was activated and the unperturbed hindlimb initiated swing during the swing phase of the perturbed hindlimb. Within five step cycles of exposure to the unilateral viscous force, however, the ST rats regained the preforce pattern of hindlimb coordination. These findings suggest that in the absence of supraspinal input, the lumbar spinal circuitry is capable of processing a complex ensemble of sensory information to maintain locomotor stability. Thus, the lumbar spinal circuitry may play a greater role in generating locomotor adaptations than previously thought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672945PMC
http://dx.doi.org/10.1523/JNEUROSCI.1635-07.2007DOI Listing

Publication Analysis

Top Keywords

lumbar spinal
16
spinal cord
12
hindlimb coordination
12
perturbed hindlimb
12
unperturbed hindlimb
12
hindlimb
11
errors hindlimb
8
viscous force
8
paw contact
8
contact perturbed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!