DNA vaccination has tremendous potential for treating or preventing numerous diseases for which traditional vaccines are ineffective but the technique can be limited by low immunogenicity. Current synthetic DNA delivery systems are versatile and safe, but substantially less efficient than viruses. Here, a novel multicomponent supramolecular system involving the preparation of mannose-bearing chitosan oligomers microspheres with entrapping complexes of DNA vaccine and polyethylenimine was developed to mimic many of the beneficial properties of the viruses. After delivery by intramuscular immunization in BALB/c mice, the microspheres induced an enhanced serum antibody responses two orders of magnitude greater than naked DNA vaccine. Additionally, in contrast to naked DNA, the microspheres induced potent cytotoxic T lymphocyte responses at a low dose. Consequently, formulation of DNA vaccines into multicomponent vectors is a powerful means of increasing vaccine potency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124441 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2007.07.002 | DOI Listing |
Wiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:
Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.
Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.
Int J Biol Macromol
January 2025
International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
African swine fever virus (ASFV) is a complex DNA virus belonging to the family Asfarviridae. The outbreak of African swine fever (ASF) has caused huge economic losses to the pig farming industry. The K205R protein is a key target for detecting ASFV antibodies and represents an important antigen for early serologic diagnosis.
View Article and Find Full Text PDFViral Immunol
January 2025
Faculty of Allied Health Sciences, Burapha University, Muang, Thailand.
Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.
View Article and Find Full Text PDFCNS Drugs
January 2025
School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, 4222, Australia.
Background: Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!