The neuronal protein FE65 functions in brain development and amyloid precursor protein (APP) signaling through its interaction with the mammalian enabled (Mena) protein and APP, respectively. The recognition of short polyproline sequences in Mena by the FE65 WW domain has a central role in axon guidance and neuronal positioning in the developing brain. We have determined the crystal structures of the human FE65 WW domain (residues 253-289) in the apo form and bound to the peptides PPPPPPLPP and PPPPPPPPPL, which correspond to human Mena residues 313-321 and 347-356, respectively. The FE65 WW domain contains two parallel ligand-binding grooves, XP (formed by residues Y269 and W280) and XP2 (formed by Y269 and W271). Both Mena peptides adopt a polyproline helical II conformation and bind to the WW domain in a forward (N-C) orientation through selection of the PPPPP motif by the XP and XP2 grooves. This mode of ligand recognition is strikingly similar to polyproline interaction with SH3 domains. Importantly, comparison of the FE65 WW structures in the apo and liganded forms shows that the XP2 groove is formed by an induced-fit mechanism that involves movements of the W271 and Y269 side-chains upon ligand binding. These structures elucidate the molecular determinants underlying polyproline ligand selection by the FE65 WW domain and provide a framework for the design of small molecules that would interfere with FE65 WW-ligand interaction and modulate neuronal development and APP signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693091 | PMC |
http://dx.doi.org/10.1016/j.jmb.2007.06.064 | DOI Listing |
Mol Cell Neurosci
December 2023
Stockholm University, Department of Biochemistry and Biophysics, 106 91 Stockholm, Sweden. Electronic address:
Fe65 is a brain enriched adaptor protein involved in various cellular processes, including actin cytoskeleton regulation, DNA repair and transcription. A well-studied interacting partner of Fe65 is the transmembrane amyloid-β precursor protein (APP), which can undergo regulated intramembrane proteolysis (RIP). Following β- and γ-secretase-mediated RIP, the released APP intracellular domain (AICD) together with Fe65 can translocate to the nucleus and regulate transcription.
View Article and Find Full Text PDFSignal Transduct Target Ther
October 2023
Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-β precursor protein (APP) in an AD brain results in the binding of APP intracellular domain (AICD) to Fe65 protein via the C-terminal Fe65-PTB2 interaction, which then triggers the secretion of amyloid-β and the consequent pathogenesis of AD. Apparently, targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD.
View Article and Find Full Text PDFMol Cell Biol
March 2023
Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
DNA double-strand breaks (DSBs) are highly toxic lesions that threaten genome integrity and cell survival. To avoid harmful repercussions of DSBs, a wide variety of DNA repair factors are recruited to execute DSB repair. Previously, we demonstrated that RBM6 splicing factor facilitates homologous recombination (HR) of DSB by regulating alternative splicing-coupled nonstop-decay of the HR protein APBB1/Fe65.
View Article and Find Full Text PDFAging Cell
March 2023
University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France.
N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown.
View Article and Find Full Text PDFOpen Biol
September 2022
School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.
ADP-ribosylation factor 6 (ARF6) is a small GTPase that has a variety of neuronal functions including stimulating neurite outgrowth, a crucial process for the establishment and maintenance of neural connectivity. As impaired and atrophic neurites are often observed in various brain injuries and neurological diseases, understanding the intrinsic pathways that stimulate neurite outgrowth may provide insights into developing strategies to trigger the reconnection of injured neurons. The neuronal adaptor FE65 has been shown to interact with ARF6 and potentiate ARF6-mediated neurite outgrowth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!