First insight into Mycobacterium tuberculosis genetic diversity in Paraguay.

BMC Microbiol

Departamento de Biología Molecular, Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción, Asunción, Paraguay.

Published: August 2007

Background: We present a picture of the biodiversity of Mycobacterium tuberculosis in Paraguay, an inland South American country harboring 5 million inhabitants with a tuberculosis notification rate of 38/100,000.

Results: A total of 220 strains collected throughout the country in 2003 were classified by spoligotyping into 79 different patterns. Spoligopatterns of 173 strains matched 51 shared international types (SITs) already present in an updated version of SpolDB4, the global spoligotype database at Pasteur Institute, Guadeloupe. Our study contributed to the database 13 new SITs and 15 orphan spoligopatterns. Frequencies of major M. tuberculosis spoligotype lineages in our sample were as follows: Latin-American & Mediterranean (LAM) 52.3%, Haarlem 18.2%, S clade 9.5%, T superfamily 8.6%, X clade 0.9% and Beijing clade 0.5%. Concordant clustering by IS6110 restriction fragment length polymorphism (RFLP) and spoligotyping identified transmission in specific settings such as the Tacumbu jail in Asuncion and aboriginal communities in the Chaco. LAM genotypes were ubiquitous and predominated among both RFLP clusters and new patterns, suggesting ongoing transmission and adaptative evolution in Paraguay. We describe a new and successfully evolving clone of the Haarlem 3 sub-lineage, SIT2643, which is thus far restricted to Paraguay. We confirmed its clonality by RFLP and mycobacterial interspersed repetitive unit (MIRU) typing; we named it "Tacumbu" after the jail where it was found to be spreading. One-fifth of the spoligopatterns in our study are rarely or never seen outside Paraguay and one-tenth do not fit within any of the major phylogenetic clades in SpolDB4.

Conclusion: Lineages currently thriving in Paraguay may reflect local host-pathogen adaptation of strains introduced during past migrations from Europe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1988809PMC
http://dx.doi.org/10.1186/1471-2180-7-75DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
8
paraguay
6
insight mycobacterium
4
tuberculosis
4
tuberculosis genetic
4
genetic diversity
4
diversity paraguay
4
paraguay background
4
background picture
4
picture biodiversity
4

Similar Publications

The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.

View Article and Find Full Text PDF

Bovine tuberculosis (BTB) is an infectious disease of livestock and wildlife species that is caused by pathogenic members of the Mycobacterium tuberculosis complex such as Mycobacterium bovis. Due to the introduction of M. bovis-infected bison in the 1920s, BTB is now endemic in wood bison (Bison bison athabascae) population within the Wood Buffalo National Park (WBNP) in northern Canada.

View Article and Find Full Text PDF

Global epidemiology of Mycobacterium tuberculosis lineage 4 insights from Ecuadorian genomic data.

Sci Rep

January 2025

Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.

Tuberculosis is a global public health concern, and understanding Mycobacterium tuberculosis transmission routes and genetic diversity of M. tuberculosis is crucial for outbreak control. This study aimed to explore the genomic epidemiology and genetic diversity of M.

View Article and Find Full Text PDF

Shotgun and targeted proteomics of Mycolicibacterium smegmatis highlight the role of arginine phosphorylation in the functional adaptation to its environment.

J Proteomics

January 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China. Electronic address:

Although the phosphorylation of serine (S), threonine (T), and tyrosine (Y) is well-established, arginine phosphorylation (pR) has recently garnered significant attention due to its crucial role in bacteria pathogenicity and stress response. Mycolicibacterium smegmatis, a nonpathogenic surrogate of Mycobacterium tuberculosis, serves as a model for studying mycobacterial pathogenesis. A recent proteomics study identified six pR proteins in M.

View Article and Find Full Text PDF

Mycobacterium bovis, the causative agent of animal tuberculosis, exhibits a broad host range - infecting, inducing pathology and transmitting from both bovine and wildlife hosts. Considerable effort has been extended to understanding the role wildlife may play in persistence and spread of infection. Infected cervids can spread infection to conspecifics and sympatric livestock as observed in the white-tailed deer (Odocoileus virginanus) population of Michigan, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!