De novo protein sequence analysis of Macaca mulatta.

BMC Genomics

Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

Published: August 2007

Background: Macaca mulatta is one of the most utilized non-human primate species in biomedical research offering unique behavioral, neuroanatomical, and neurobiochemcial similarities to humans. This makes it a unique organism to model various diseases such as psychiatric and neurodegenerative illnesses while also providing insight into the complexities of the primate brain. A major obstacle in utilizing rhesus monkey models for human disease is the paucity of protein annotations for this species (~42,000 protein annotations) compared to 330,210 protein annotations for humans. The lack of available information limits the use of rhesus monkey for proteomic scale studies which rely heavily on database searches for protein identification. While characterization of proteins of interest from Macaca mulatta using the standard database search engines (e.g., MASCOT) can be accomplished, searches must be performed using a 'broad species database' which does not provide optimal confidence in protein annotation. Therefore, it becomes necessary to determine partial or complete amino acid sequences using either manual or automated de novo peptide sequence analysis methods.

Results: The recently popularized MALDI-TOF-TOF mass spectrometer yields a complex MS/MS fragmentation pattern difficult to characterize by manual de novo sequencing method on a proteomics scale. Therefore, PEAKS assisted de novo sequencing was performed on nucleus accumbens cytosolic proteins from Macaca mulatta. The most abundant peptide fragments 'b-ions and y-ions', the less abundant peptide fragments 'a-ions' as well as the immonium ions were utilized to develop confident and complete peptide sequences de novo from MS/MS spectra. The generated sequences were used to perform homology searches to characterize the protein identification.

Conclusion: The current study validates a robust method to confidently characterize the proteins from an incomplete sequence database of Macaca mulatta, using the PEAKS de novo sequencing software, facilitating the use of this animal model in various neuroproteomics studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1965481PMC
http://dx.doi.org/10.1186/1471-2164-8-270DOI Listing

Publication Analysis

Top Keywords

macaca mulatta
20
protein annotations
12
novo sequencing
12
sequence analysis
8
rhesus monkey
8
abundant peptide
8
peptide fragments
8
novo
6
protein
6
macaca
5

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Queen's University, Kingston, ON, Canada; D'OR Institute for Research and Education, Rio de Janeiro, Rio de Janeiro, Brazil.

Background: Physical exercise improves overall brain health, cognition, and stimulates the release of extracellular vesicles (EVs) in humans. Exercise upregulates irisin, a myokine derived from fibronectin type III domain-containing protein 5 (FNDC5) previously shown to mediate the beneficial actions of exercise on memory in mouse models of Alzheimer's disease (AD). Here, we investigated if physical exercise upregulates EVs.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Yale University, New Haven, CT, USA.

Background: Advances in Alzheimer's disease (AD) have revealed a novel fluid biomarker, tau phosphorylated at T217 (pT217-tau), in CSF and plasma, that predicts AD prior to cognitive deficits. Understanding the role of pT217-tau is important in assessing efficacy of novel treatments aimed at early-stage disease. However, it is unknown why pT217-tau is effective in predicting brain pathology, as little is known about early, soluble pT217-tau brain expression.

View Article and Find Full Text PDF

A central tenet of cognitive neuroscience is that humans build an internal model of the external world and use mental simulation of the model to perform physical inferences. Decades of human experiments have shown that behaviors in many physical reasoning tasks are consistent with predictions from the mental simulation theory. However, evidence for the defining feature of mental simulation - that neural population dynamics reflect simulations of physical states in the environment - is limited.

View Article and Find Full Text PDF

Infection of an adult rhesus macaque with SARS-CoV-2 led to viral RNAemia in nose, throat, and lungs. The animal also presented extended fecal shedding of viral genomic and subgenomic messenger RNA and replication-competent virus for more than 3 weeks after infection. Positron emission tomography revealed increased intestinal glucose metabolism which was histologically related to inflammation of the ileum.

View Article and Find Full Text PDF

Intradermal Bacillus Calmette-Guérin (BCG) is the most widely administered vaccine, but it does not sufficiently protect adults against pulmonary tuberculosis. Recent studies in nonhuman primates show that intravenous BCG administration offers superior protection against (). We used single-cell analysis of bronchoalveolar lavage cells from rhesus macaques vaccinated via different routes and doses of BCG to identify alterations in the immune ecosystem in the airway following vaccination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!