Viscoelastic properties of lungs and thoracic wall of anesthetized mechanically ventilated piglets.

Vet Anaesth Analg

Service de Réanimation Médicale et d'Assistance Respiratoire, Hôpital de la Croix Rousse, Lyon, France.

Published: September 2007

AI Article Synopsis

  • The study aimed to investigate the viscoelastic properties of piglet lungs and thoracic walls, using a controlled experimental approach with six 30 kg piglets undergoing tracheotomy and mechanical ventilation.
  • Acute lung injury was induced to measure changes in lung and thoracic wall tissue resistance, using a rapid airway occlusion technique to assess how different pressures affected viscoelastic properties.
  • Results showed a significant increase in lung resistance and time constant during acute lung injury, indicating altered mechanical properties, with varying effects observed under zero end-expiratory pressure and positive end-expiratory pressure conditions.

Article Abstract

Objective: To investigate the viscoelastic properties of lungs and thoracic wall in piglets.

Study Design: Prospective experimental study.

Animals: Six piglets weighting 30 kg.

Methods: Animals were tracheotomized, anesthetized and mechanically ventilated under controlled conditions. After control measurements of the mechanical properties of the lung of the pigs had been taken, acute lung injury (ALI) was induced by saline lavage. Lung and thoracic wall tissue resistance (DeltaR), which reflects viscoelastic properties and/or time constant inequalities, were determined by using a rapid airway occlusion technique during constant flow inflation (V), at constant tidal volume. was varied from 0.1-0.2 to 1.2 L second(-1) on a single breath. Multiple data sets of DeltaR of lung (DeltaR(L)) and thoracic wall (DeltaR(w)) to inspiratory time (T(I) = V(T)/V) were fitted to a model whose prediction equation was DeltaR = R(2)[1 -exp(-T(I)/tau(2))], where R(2) and tau(2) are the 'viscoelastic' resistance and time constant, respectively. Subscripts (L) and (W) are used to represent lung and thoracic wall, respectively (R(2L), R(2W), tau(2L), tau(2W)). Two more sets of physiological measurements were then taken--the first under zero end-expiratory pressure (ZEEP) and the second under a positive end-expiratory pressure (PEEP) of 10 cmH(2)O.

Results: Data of DeltaR adequately fitted to the prediction equation in all instances. In control, R(2,L) was 15.3 (10.7-22.6) cmH(2)O L(-1) second(-1) (median, interquartile range), tau(2,L) 3.3 (1.9-5.5) seconds, R(2,w) 6.5 (2.2-10.3) cmH(2)O L(-1) second(-1) and tau(2,w) 2.9 (1.1-4.3) seconds. In ALI, R(2,L) significantly increased to 129.6 (105.9-171.3) cmH(2)O L(-1) second(-1) on ZEEP but not significantly decreased to 48.9 (17.8-109.6) cmH(2)O L(-1) second(-1) with PEEP. The corresponding values of tau(2,L) were 7.1 (5.1-11.6) and 4.4 (3.1-5.5) seconds. The values pertaining to thoracic wall did not change significantly among conditions.

Conclusions And Clinical Relevance: Viscoelastic properties of the lung and thoracic wall in piglets can be described by a viscoelastic model. Values of parameters of this model were markedly increased in ALI and decreased with PEEP.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1467-2995.2006.00336.xDOI Listing

Publication Analysis

Top Keywords

thoracic wall
28
viscoelastic properties
16
cmh2o l-1
16
l-1 second-1
16
lung thoracic
12
properties lungs
8
lungs thoracic
8
anesthetized mechanically
8
mechanically ventilated
8
properties lung
8

Similar Publications

Endoscopic Mitral Surgery in Noonan Syndrome-Case Report and Considerations.

J Clin Med

January 2025

Department of Surgery IV, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania.

: Totally endoscopic techniques have become increasingly popular in cardiac surgery, with minimally invasive mitral valve repair emerging as an effective alternative to median sternotomy. This approach could be particularly advantageous for patients with Noonan syndrome, who often present with structural thoracic anomalies and other comorbidities like bleeding disorders. Endoscopic mitral valve surgery is rapidly establishing itself as the new standard of care for mitral valve operations, demonstrating both safety and efficacy.

View Article and Find Full Text PDF

Spontaneous Chest Wall Hematoma in a Hemodialysis Patient: A Case Report.

J Clin Med

January 2025

Department of Plastic and Reconstructive Surgery, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea.

: Spontaneous chest wall hematomas are rare but potentially life-threatening complications, particularly in patients with multiple comorbidities such as those undergoing hemodialysis. This case report aims to highlight the significance of early diagnosis and appropriate management in preventing complications associated with this condition. : We report the case of a 79-year-old man with end-stage renal disease on hemodialysis, presenting with a large spontaneous hematoma (18.

View Article and Find Full Text PDF

: EnBloc resections of bone tumors of the spine are very demanding as the target to achieve a tumor-free margin specimen (sometimes impossible due to the extracompartimental tumor extension) is sometimes conflicting with the integrity of neurological functions and spine stability. : The surgical treatment of a huge multi-level chordoma of the thoracic spine with unusual extension is reported. Anteriorly, the tumor widely invaded the mediastinum and displaced the aorta; on the left side, it expanded in the subpleuric region; posteriorly, it was uncommonly distant 13 mm from the posterior wall.

View Article and Find Full Text PDF

The evolution of regional anesthesia techniques has markedly influenced the management of postoperative pain, particularly in thoracic surgery. As part of a multimodal analgesic approach, fascial plane blocks have gained prominence due to their efficacy in providing targeted analgesia with minimal systemic side effects. Among these, the superficial intercostal plane (SPIP) block and deep parasternal intercostal plane (DPIP) block are of notable interest.

View Article and Find Full Text PDF

Impact of Vein Wall Hyperelasticity and Blood Flow Turbulence on Hemodynamic Parameters in the Inferior Vena Cava with a Filter.

Micromachines (Basel)

December 2024

Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!