Long-term neuroplastic changes to dentate granule cells have been reported after seizures and were shown to contribute to recurrent excitatory circuitry. These changes include increased numbers of newborn granule cells, sprouted mossy fibers, granule cell layer dispersion, increased hilar ectopic granule cells and formation of hilar basal dendrites on granule cells. The goal of the current study was to determine the acute progression of neuroplastic changes involving newly generated granule cells after pilocarpine-induced seizures. Doublecortin (DCX) immunocytochemical preparations were used to examine the newly generated granule cells 1-5 days after seizures were induced. The results showed that there are rapid neuroplastic changes to the DCX-labeled cells. At 1 day after seizures were induced, there were significant increases in the percentage of DCX-labeled cells with hilar basal dendrites and in the progenitor cell population. At 2 days after seizures were induced, an increase in the thickness of the layer of DCX-labeled cells occurred. At 3 days after seizures were induced, the number of DCX-labeled cells was significantly increased. At 4 days after seizures were induced, developing synapses were observed on DCX-labeled hilar basal dendrites. Thus, newly generated granule cells in the adult dentate gyrus display neuroplastic changes by 1 day after pilocarpine-induced seizures and further changes occur to this population of cells in the subsequent 4 days. The presence of synapses, albeit developing ones, on hilar basal dendrites during this period indicates that newly generated granule cells become rapidly incorporated into dentate gyrus circuitry following seizures.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2007.05662.xDOI Listing

Publication Analysis

Top Keywords

granule cells
36
newly generated
20
generated granule
20
neuroplastic changes
20
seizures induced
20
hilar basal
16
basal dendrites
16
days seizures
16
dcx-labeled cells
16
cells
14

Similar Publications

Human cancer cells xenografts to assess the efficacy of granulysin-based therapeutics.

Methods Cell Biol

January 2025

Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain. Electronic address:

9-kDa Granulysin is a protein present in the granules of human activated cytotoxic T lymphocytes and natural killer cells. It has been shown to exert cytolytic activity against a wide variety of microbes: bacteria, fungi, yeast and protozoa. Recombinant isolated granulysin is also capable of inducing tumor cell death, so it could be used as an anti-tumor therapy.

View Article and Find Full Text PDF

In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.

View Article and Find Full Text PDF

Exposure to environmentally relevant levels of DEHP during development modifies the distribution and expression patterns of androgen receptors in the anterior pituitary in a sex-specific manner.

Chemosphere

January 2025

Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina. Electronic address:

DEHP is a prevalent phthalate with wide industrial applications and well-documented endocrine-disrupting effects, including the potential disruption of AR signaling in different tissues. The present study aimed to investigate the effects of gestational and lactational exposure to environmentally relevant DEHP concentrations on AR expression and subcellular localization in the pituitary gland, the master endocrine organ, with a focus on gonadotroph cells by in vivo and in vitro approaches. After DEHP exposure during gestation and lactation, a sex-specific modulation was detected in AR-positive pituitary cells and AR protein expression as assessed through flow cytometry and western blot.

View Article and Find Full Text PDF

Modelling Peroxisomal Disorders in Zebrafish.

Cells

January 2025

Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.

Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication.

View Article and Find Full Text PDF

Gualou Guizhi Granule inhibits microglia-mediated neuroinflammation to protect against neuronal apoptosis and .

Front Immunol

January 2025

Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Object: Neuroinflammation mediated by microglia has emerged as a critical factor in ischemic stroke and neuronal damage. Gualou Guizhi Granule (GLGZG) has been shown to suppress inflammation in lipopolysaccharide (LPS)-activated microglia, though the underlying mechanisms and its protective effects against neuronal apoptosis remain unclear. This study aims to investigate how GLGZG regulates the Notch signaling pathway in microglia to reduce neuroinflammation and protect neurons from apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!