Thiamine-dependent processes and treatment strategies in neurodegeneration.

Antioxid Redox Signal

Department of Neurology and Neurosciences, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York 10605, USA.

Published: October 2007

Reductions in brain glucose metabolism and increased oxidative stress invariably occur in Alzheimer's disease (AD) and thiamine (vitamin B1) deficiency. Both conditions cause irreversible cognitive impairment; their behavioral consequences overlap but are not identical. Thiamine-dependent processes are critical in glucose metabolism, and recent studies implicate thiamine in oxidative stress, protein processing, peroxisomal function, and gene expression. The activities of thiamine-dependent enzymes are characteristically diminished in AD, and the reductions in autopsy AD brain correlate highly with the extent of dementia in the preagonal state. Abnormalities in thiamine-dependent processes can be plausibly linked to the pathology of AD. Seemingly paradoxical properties of thiamine-dependent processes may underlie their relation to the pathophysiology of AD: Reduction of thiamine-dependent processes increase oxidative stress. Thiamine can act as a free radical scavenger. Thiamine-dependent mitochondrial dehydrogenase complexes produce oxygen free radicals and are sensitive to oxidative stress. Genetic disorders of thiamine metabolism that lead to neurological disease can be treated with large doses of thiamine. Although thiamine itself has not shown dramatic benefits in AD patients, the available data is scanty. Adding thiamine or more absorbable forms of thiamine to tested treatments for the abnormality in glucose metabolism in AD may increase their efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2007.1766DOI Listing

Publication Analysis

Top Keywords

thiamine-dependent processes
20
oxidative stress
16
glucose metabolism
12
thiamine
8
thiamine-dependent
7
processes treatment
4
treatment strategies
4
strategies neurodegeneration
4
neurodegeneration reductions
4
reductions brain
4

Similar Publications

Apo structure of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate synthase DXPS: Dynamics and implications for inhibitor design.

Biochem Biophys Res Commun

January 2025

Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands. Electronic address:

The enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyses the first step of the MEP pathway, a key process for isoprenoid biosynthesis in bacteria that is absent in humans, making it a promising drug target. We present the structure of Mycobacterium tuberculosis DXPS in its apo form, obtained through a soaking method that removes thiamine diphosphate (ThDP) and metals from pre-formed crystals. The apo structure had three regions with absence of electron density near the active site that are unique to the apo form of the enzyme.

View Article and Find Full Text PDF

Synergistic photobiocatalysis for enantioselective triple radical sorting.

Nature

November 2024

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Multicomponent reactions - those where three or more substrates combine into a product - have been highly useful in rapidly building chemical building blocks of increased complexity, but achieving this enzymatically has remained rare. This limitation primarily arises because an enzyme's active site is not typically set up to address multiple substrates, especially in cases involving multiple radical intermediates. Recently, chemical catalytic radical sorting has emerged as an enabling strategy for a variety of useful reactions.

View Article and Find Full Text PDF

Thiamine-dependent processes are critical in cerebral glucose metabolism, it is abnormity induces oxidative stress, inflammation and neurodegeneration. Nod-like receptor protein-3 (NLRP3) inflammasome-mediated inflammation is closely related to neurologic diseases and can be activated by oxidative stress. However, the impact of thiamine deficiency on NLRP3 inflammasome activation remains unknown.

View Article and Find Full Text PDF

The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: A systematic review.

Clin Nutr ESPEN

June 2018

Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G31 2ER, United Kingdom.

The WHO 2016 report indicates that worldwide obesity is rising, with over 600 million people in the obese range (BMI>30). The recommended daily calorie intake for adults is 2000 kcal and 2500 kcal for women and men respectively. The average American consumes 3770 kcal/day and the average person in the UK consumes 3400 kcal/day.

View Article and Find Full Text PDF

Background: Oxidative stress accompanies neurodegeneration and also causes abnormalities in thiaminedependent processes. These processes have been reported to be diminished in the brains of patients with several neurodegenerative diseases.

Objectives: The aim of this work was to conduct a comparative analysis of the impact of supplemented thiamine on the viability of human B lymphocytes with CAG abnormal expanded huntingtin gene (mHTT) (GM13509) and control, B lymphocytes without mHTT (GM14467) through the following studies: determination of the supplemented thiamine concentrations, which are effective for cell growth stimulation after incubation in thiamine deficit conditions; determination of cell capability to intake the exogenous thiamine; evaluation of exogenous thiamine influence on the profile of the genes related to thiamine and energy metabolism; determination of ATP synthesis and activities of thiamine-dependent enzymes, KGDHC and BCKDHC in the intact cells and upon the exogenous thiamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!