Vibrationally excited CF(2)ClCHFC(2)H(5)(CF(2)ClCHFC(2)D(5)) molecules were prepared in the gas phase at 300 K with approximately 93 kcal mol(-1) of energy by recombination of CF(2)ClCHF and C(2)H(5) or C(2)D(5) radicals. Three unimolecular reactions were observed. 1,2-ClF interchange converts CF(2)ClCHFC(2)H(5)(CF(2)ClCHFC(2)D(5)) into CF(3)CHClC(2)H(5)(CF(3)CHClC(2)D(5)), and subsequent 2,3-ClH (ClD) elimination gives CF(3)CH=CHCH(3) (CF(3)CH=CDCD(3)). 2,3-FH(FD) elimination gives cis- and trans-CF(2)ClCH=CHCH(3) (CF(2)ClCH=CDCD(3)), and 1,2-ClH elimination gives CF(2)=CFCH(2)CH(3) (CF(2)=CFCD(2)CD(3)). The experimental rate constants for CF(2)ClCHFC(2)H(5) (CF(2)ClCHFC(2)D(5)) were 1.3 x 10(4) (0.63 x 10(4)) s(-1) for 1,2-FCl interchange and 2.1 x 10(4) (0.61 x 10(4)) s(-1) with a trans/cis ratio of 3.7 for 2,3-FH(FD) elimination. The 1,2-ClH process was the least important with a branching fraction of only 0.08 +/- 0.04. The rate constants for 2,3-ClH (ClD) elimination from CF(3)CHClC(2)H(5) (CF(3)CHClC(2)D(5)) were 1.8 x 10(6) (0.49 x 10(6)) s(-1) with a trans/cis ratio of 2.4. Density functional theory was used to compute vibrational frequencies and structures needed to obtain rate constants from RRKM theory. Matching theoretical and experimental rate constants provides estimates of the threshold energies, E0, for the three reaction pathways; 1,2-FCl interchange has the lowest E0. The unimolecular reactions of CF(2)ClCHFC(2)H(5) are compared to those of CF(2)ClCHFCH(3). Both of these systems are compared to CH(3)CHFC(2)H(5) to illustrate the influence of a CF(2)Cl group on the E0 for FH elimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp071837k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!