The genome-wide investigation of gene expression at the transcript level with use of DNA microarray has recently allowed to list almost all the genes that are induced by a distinct environmental stress in cyanobacterial and plant cells. Acclimation of living organisms to stress conditions begins with the perception and transduction of the stress signal. The combination of systematic mutagenesis of potential sensors and transducers with DNA microarray analysis in an attempt to identify these components led to significant progress in understanding the mechanisms for perception of environmental stresses in photosynthesizing cells. This review is focused on signaling systems that perceive and transduce the signals of cold, hyperosmotic, and salt stresses in cyanobacteria and plants.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sensors transducers
8
cold hyperosmotic
8
hyperosmotic salt
8
salt stresses
8
stresses cyanobacteria
8
dna microarray
8
[protein sensors
4
transducers cold
4
cyanobacteria plants]
4
plants] genome-wide
4

Similar Publications

Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).

View Article and Find Full Text PDF

Underwater acoustic transducers need to expand the coverage of acoustic signals as much as possible in most ocean explorations, and the directivity indicators of transducers are difficult to change after the device is packaged, which makes the emergence angle of the underwater acoustic transducer limited in special operating environments, such as polar regions, submarine volcanoes, and cold springs. Taking advantage of the refractive characteristics of sound waves propagating in different media, the directivity indicators can be controlled by installing an acoustic lens outside the underwater acoustic transducer. To increase the detection range of an underwater acoustic transducer in a specific marine environment, a curvature-determining method for the diverging acoustic lens of an underwater acoustic transducer is proposed based on the acoustic ray tracing theory.

View Article and Find Full Text PDF

This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical-mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions.

View Article and Find Full Text PDF

Integrated Spectral Sensitivity as Physics-Based Figure of Merit for Spectral Transducers in Optical Sensing.

Sensors (Basel)

January 2025

Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

The design of optical sensors aims at providing, among other things, the highest precision in the determination of the target measurand. Many sensor systems rely on a spectral transducer to map changes in the measurand into spectral shifts of a resonance peak in the reflection or transmission spectrum, which is measured by a readout device (e.g.

View Article and Find Full Text PDF

For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!