Push/pull hemodiafiltration is characterized by alternate filtration and backfiltration, while sterile pyrogen-free dialysate is flowing through a hemodiafilter. During the filtration phase, uremic substances are eliminated not only by diffusive, but also by convective transport. During the backfiltration phase, dialysate is quickly pushed to the blood side (i.e. backfiltration) so as to make up for the excessive reduction in body fluid that has developed during the immediately preceding filtration phase. In the most recently improved version of push/pull hemodiafiltration, the body fluid replacement volume is over 120 liters during a 4- hour treatment. This replacement of a large amount of body fluid may be due to the increased filtration rate in the hemodiafilter resulting from failure of the complete formation of a protein gel layer on the blood side surface. The filtration time in push/pull hemodiafiltration is so short that the also short backfiltration to follow may take over before the protein gel layer is completely formed on the membrane surface. Since the filtration and backfiltration times are much shorter in push/pull hemodiafiltration than the time for blood to pass through the hemodiafilter, it is concentrated and diluted many times (approx. 25 times) before it leaves the hemodiafilter. Therefore, push/pull hemodiafiltration is functionally similar to a predilution hemodiafiltration. The reduction rate of beta-microglobulin was greater by push/pull hemodiafiltration than by hemodialysis, when a high-flux polysulfone hemodiafilter was employed. However, the difference in the reduction rate was rather small between them, because of the improved hemodiafilters, which remove so much beta2-microglobulin only by dialysis. Nevertheless, restless legs syndrome, irritability, insomnia and pruritus were alleviated after switching the treatment modality from hemodialysis to push/pull hemodiafiltration. This may indicate that these symptoms are caused by the accumulation of uremic substances larger than beta2-microglobulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000107247 | DOI Listing |
PLoS One
June 2020
Quanta Dialysis Technologies Ltd, Alcester, Warwickshire, United Kingdom.
Background And Objective: The SC+ haemodialysis system developed by Quanta Dialysis Technologies is a small, easy-to-use dialysis system designed to improve patient access to self-care and home haemodialysis. A prototype variant of the standard SC+ device with a modified fluidic management system generating a pulsatile push-pull dialysate flow through the dialyser during use has been developed for evaluation. It was hypothesized that, as a consequence of the pulsatile push-pull flow through the dialyser, the boundary layers at the membrane surface would be disrupted, thereby enhancing solute transport across the membrane, modifying protein fouling and maintaining the surface area available for mass and fluid transport throughout the whole treatment, leading to solute transport (clearance) enhancement compared to normal haemodialysis (HD) operation.
View Article and Find Full Text PDFExpert Rev Med Devices
September 2013
Department of Internal Medicine, Nephrology Division, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, USA
The incidence of kidney disease is rapidly increasing worldwide, and techniques and devices for treating end-stage renal disease (ESRD) patients have been evolving. Better outcomes achieved by convective treatment have encouraged the use of synthetic membranes with high water permeability in clinical setups, and high-flux hemodialysis (HD) and hemodiafiltration (HDF) are now preferred forms of convective therapy in ESRD patients. Push/pull-based dialysis strategies have also been examined to increase convective mass transfer in ESRD patients.
View Article and Find Full Text PDFG Ital Nefrol
October 2012
Struttura Complessa di Nefrologia e Dialisi, Ospedale San Bassiano, Bassano del Grappa, Italy.
Growing evidence demonstrates that morbidity and mortality in patients with end-stage renal disease correlate significantly with retention of larger uremic toxins including β2 microglobulin. Even when hemodialysis is performed, complications such as dialysis-associated amyloidosis are likely to develop. These complications seem to be related to the retention and accumulation of larger uremic substances, only a small amount of which are removed by hemodialysis.
View Article and Find Full Text PDFASAIO J
August 2012
AnC Bio Inc., Seoul, Korea.
The repetition of forward and backward filtration during hemodialysis (HD) increases convective mass transfer, and thus, the authors devised a method of achieving cyclic repletion of ultrafiltration and backfiltration. Hemodialytic efficiencies of the developed unit are described. The devised method, named pulse push/pull hemodialysis (PPPHD), is based on the utilization of dual pulsation in a dialysate stream.
View Article and Find Full Text PDFClin J Am Soc Nephrol
September 2009
Cedars-Sinai Medical Center, Los Angeles, California 90212, USA.
Background: The wearable artificial kidney (WAK) has been a holy grail in kidney failure for decades. Described herein are the breakthroughs that made possible the creation of the WAK V1.0 and its advanced versions V 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!