Neutrophil's responses to G protein-coupled chemoattractants are highly dependent on store-operated calcium (Ca(2+)) entry (SOCE). Platelet-activating factor (PAF), a primary chemoattractant, simultaneously increases cytosolic-free Ca(2+), intracellular pH (pH(i)), ERK1/2, and Akt/protein kinase B (PKB) phosphorylation. In this study, we looked at the efficacy of several putative SOCE inhibitors and whether SOCE mediates intracellular alkalinization, ERK1/2, and Akt/PKB phosphorylation in bovine neutrophils. We demonstrated that the absence of external Ca(2+) and the presence of EGTA reduced the intracellular alkalinization and ERK1/2 phosphorylation induced by PAF, apparently via SOCE influx inhibition. Next, we tested the efficacy of several putative SOCE inhibitors such as 2-aminoethoxydiphenyl borate (2-APB), capsaicin, flufenamic acid, 1-{beta-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl}-1H-imidazole hydrochloride (SK&F 96365), and N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2) on Ca(2+) entry induced by PAF or thapsigargin. 2-APB was the most potent SOCE inhibitor, followed by capsaicin and flufenamic acid. Conversely, SK&F 96365 reduced an intracellular calcium ([Ca(2+)](i)) peak but SOCE partially. BTP2 did not show an inhibitory effect on [Ca(2+)](i) following PAF stimuli. 2-APB strongly reduced the pH(i) recovery, whereas the effect of flufenamic acid and SK&F 96365 was partial. Capsaicin and BTP2 did not affect the pH(i) changes induced by PAF. Finally, we observed that 2-APB reduced the ERK1/2 and Akt phosphorylation completely, whereas the inhibition with flufenamic acid was partial. The results suggest that 2-APB is the most potent SOCE inhibitor and support a key role of SOCE in pH alkalinization and PI-3K-ERK1/2 pathway control. Finally, 2-APB could be an important tool to characterize Ca(2+) signaling in neutrophils.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.0307196DOI Listing

Publication Analysis

Top Keywords

flufenamic acid
16
intracellular alkalinization
12
alkalinization erk1/2
12
induced paf
12
sk&f 96365
12
soce
9
store-operated calcium
8
mediates intracellular
8
erk1/2 akt/pkb
8
akt/pkb phosphorylation
8

Similar Publications

A new functional group transformation allowing the synthesis of methyl-dithioesters from readily available trifluoromethyl arenes defluorinative functionalization has been developed. This microwave-assisted method is operationally simple, rapid, and eliminates the need for pre-functionalization while accommodating a broad range of functional groups. In addition, it does not rely on highly odorous thiol sources, and utilizes the commercially available reagent BFSMe complex as a multifunctional Lewis acid/sulfur source/defluorination and demethylation agent.

View Article and Find Full Text PDF

Nanoparticle-protein interactions: Spectroscopic probing of the adsorption of serum albumin to graphene oxide‑gold nanocomplexes surfaces.

Int J Biol Macromol

January 2025

Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China. Electronic address:

Graphene oxide‑gold nanocomposites (GO-AuNCPs) are promising candidates in nanomedicine. They will inevitably bind with biomolecules such as serum albumin (SA) in the body while they enter the organism. The interaction between GO-AuNCPs and human serum albumin (HSA)/bovine serum albumin (BSA) were investigated by using multispectroscopic methods, elucidating the binding principles through molecular simulations.

View Article and Find Full Text PDF

Bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs) expressed orally and extraorally, elicit signaling in response to a large set of tastants. Among 25 functional TAS2Rs encoded in the human genome, TAS2R14 is the most promiscuous, and responds to hundreds of chemically diverse ligands. Here we present the cryo-electron microscopy (cryo-EM) structure of the human TAS2R14 in complex with its signaling partner gustducin, and bound to flufenamic acid (FFA), a clinically approved nonsteroidal anti-inflammatory drug.

View Article and Find Full Text PDF

Towards the discovery of unrevealed flufenamic acid cocrystals via structural resemblance for enhanced topical drug delivery.

Int J Pharm

January 2025

Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong. Electronic address:

Cocrystallization has emerged as a promising formulation strategy for modulating transdermal drug absorption by enhancing solubility and permeability. However, challenges related to cocrystal dissociation in the semi-solid state need to be addressed to mitigate regulatory concerns before the widespread implementation of topical cocrystal products in clinical practice. This study aimed to develop oil-based topical formulations incorporating cocrystals with distinct thermodynamic stabilities, followed by investigating the roles of different structurally similar coformers and oily vehicles on their physicochemical properties.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined a composite material made of silica aerogel and flufenamic acid (FFA) using various nuclear magnetic resonance (NMR) techniques to understand its structural and sorption properties.
  • Magic angle spinning NMR revealed strong interactions between the aerogel and FFA, while solid-state NMR provided information on the aerogel's stability and confirmed FFA's presence within the composite.
  • Results showed that the inclusion of FFA altered the aerogel's pore structure and sorption characteristics, which is important for creating new solid drug forms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!