The overall structure of type IV collagen is the same at neutral and acidic pH, as determined by circular dichroism spectra. The heating rate dependence of denaturation midpoint temperature (T(m)) shows that type IV collagen is unstable at body temperature, similarly to type I collagen. The heating rate dependence of T(m) at neutral pH has two phases, but that at acidic pH apparently has a single phase. The T(m) of the first phase (lower T(m)) at neutral pH is consistent with that at acidic pH, and the activation energy of these phases is consistent, within experimental error. The triple helix region of type IV collagen corresponding to the second phase (higher T(m)) at neutral pH is thermally stable when compared to the triple helical structure at acidic pH. At acidic pH, as the loosely packed and unstable region has spread throughout the whole molecule, the thermal transition is thought to be cooperative and is observed as a single phase. Structural flexibility is related to protein function and assembly; therefore, the unstable structure and increased flexibility of type IV collagen induced at acidic pH may affect diseases accompanied by type IV collagen disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvm103DOI Listing

Publication Analysis

Top Keywords

type collagen
28
heating rate
8
rate dependence
8
temperature type
8
single phase
8
collagen
7
type
6
acidic
6
characteristics type
4
collagen unfolding
4

Similar Publications

Collagen Alpha 1(XI) Amino-Terminal Domain Modulates Type I Collagen Fibril Assembly.

Biochemistry

January 2025

Biomolecular Research Institute, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States.

The amino-terminal domain of collagen α1(XI) plays a key role in controlling fibrillogenesis. However, the specific mechanisms through which various isoforms of collagen α1(XI) regulate this process are not fully understood. We measured the kinetics of collagen type I self-assembly in the presence of specific collagen α1(XI) isoforms.

View Article and Find Full Text PDF

Gut Microbiota Metabolites Sensed by Host GPR41/43 Protect Against Hypertension.

Circ Res

January 2025

Hypertension Research Laboratory, School of Biological Sciences (R.R.M., T.Z., E.D., L.X., A.B.-W., H.A.J., M.N., M.P., K.C.L., W.Q., J.A.O.D., F.Z.M.).

Background: Fermentation of dietary fiber by the gut microbiota leads to the production of metabolites called short-chain fatty acids, which lower blood pressure and exert cardioprotective effects. Short-chain fatty acids activate host signaling responses via the functionally redundant receptors GPR41 and GPR43, which are highly expressed by immune cells. Whether and how these receptors protect against hypertension or mediate the cardioprotective effects of dietary fiber remains unknown.

View Article and Find Full Text PDF

TRIPLE Score: GPVI and CD36 Expression Predict a Prothrombotic Platelet Function Phenotype.

Circ Res

January 2025

Institute for Cardiovascular and Metabolic Research, Health and Life Sciences Building, University of Reading, United Kingdom. (N.K., C.K., J.L.D., T.S., S.R., M.V.D.A., V.S., N.R., C.I.J., J.M.G.).

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a long-term inflammatory autoimmune disease that damages cartilage and synovial membranes while also affecting bones and joints. The aim of the current study was to investigate the antiarthritic effect of gossypin against collagen-induced arthritis (CIA) in rats.

Methods: Intraperitoneal administration of Type II collagen (2 mg/mL) was used to induce arthritis in the rats, followed by oral administration of gossypin (5, 10 and 15 mg/kg) for 28 days.

View Article and Find Full Text PDF

When cellular ageing is accelerated by various extrinsic/endogenous stimuli, regenerative function deteriorates, and enriched secretomes, such as the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and cause matrix degeneration. SASPs from senescent fibroblasts exacerbate cellular senescence via autocrine signalling and also accelerate skin ageing through the induction of neighbouring cell senescence via paracrine signalling. The interaction between dermis fibroblasts and their neighbours, adipose-derived stem cells (ADSCs) in the hypodermis, which lies deep in the dermis, is a potential target for skin ageing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!