Objective: To study the effect of recombinant pAd-BMP-7 on osteogenic differentiation of rat bone marrow mesenchymal stem cells (MSC).
Methods: Recombinant pAd-bone morphogenetic protein (BMP) 7 was constructed and the titer of recombinant adenovirus was determined. pAd-BMP-7 and pAdTrack-CMV were used to transfect rat MSC. Transfection efficiency was measured by fluorescent microscope and BMP-7 expression was detected by RT-PCR and immunocytochemical analysis. The MSC were then randomly divided into 3 groups: group A received pAd-BMP-7 transfection, group B was transfected with pAdTrack-CMV, and group C received pAdTrack-CMV transfection plus bone supplements. Osteogenic differentiation of MSC was evaluated by examination of mineralization nodes formation.
Results: The titer of pAd-BMP-7 reached about 2.0 x 10(15) pfu/L and transfection efficiency of exogenous gene was nearly 99% at day 2. The expression of exogenous gene sustained about 5 to 7 weeks, with a higher level during first 3 weeks. After transfection, transcription of BMP-7 and expression of BMP-7 protein were also verified in MSC. Compared with the negative results in group B, mineralization nodes were formed in both group A and group C. However, group A showed better formation of mineralization nodes than group C (P < 0.01).
Conclusions: The results of this study indicated that recombinant pAd-BMP-7 can successfully transfect rat MSC and accelerate their osteogenic differentiation. The technique explored in this study provides a unique and valuable gene engineering approach for reconstruction of craniofacial bone defects.
Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
The involvement of neurons in the peripheral nervous system is crucial for bone regeneration. Mimicking extracellular matrix cues provides a more direct and effective strategy to regulate neuronal activity and enhance bone regeneration. However, the simultaneous coupling of the intrinsic mechanical-electrical microenvironment of implants to regulate innervated bone regeneration has been largely neglected.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. Electronic address:
Periodontal disease is a major contributor to tooth loss worldwide in adults. Particularly, periodontal bone defect is a common clinical condition, yet current therapeutic strategies exhibit limited effectiveness. Recently, natural bone graft materials have attracted considerable interest for enhancing bone defect repair due to their superior biocompatibility and osteogenic capabilities.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.
View Article and Find Full Text PDFElife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!