Single-source molecular precursors were found to produce iron phosphide materials. In a surfactant system of trioctylamine and oleic acid, H2Fe3(CO)9PtBu reacted to form Fe4(CO)12(PtBu)2, which decomposed to give Fe2P nanorods and "bundles." Control of the morphology obtained was possible by varying the surfactant system; addition of increasing amounts of oleic acid resulted in crystal splitting, while the addition of microliter amounts of an alkane enhanced the crystal splitting to give sheaflike structures. The different morphologies seen were attributed to imperfect crystal growth mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl0713225 | DOI Listing |
J Colloid Interface Sci
December 2024
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China. Electronic address:
The rational design of highly efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts is crucial for hydrogen production through electrocatalytic water splitting. Although the crystalline/amorphous heterostructure shows great potential in enhancing OER activity, its fabrication presents significantly greater challenges compared to that of crystalline/crystalline heterostructures. Herein, a microwave irradiation strategy is developed to construct reduced graphene oxide supported crystalline NiP/amorphous FePO heterostructure (NiP/FePO/RGO) as an efficient OER electrocatalyst.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
College of Materials, Institute of Artificial Intelligence, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China.
Nickel-iron-based catalysts are recognized for their high efficiency in the oxygen evolution reaction (OER) under alkaline conditions, yet the underlying mechanisms that drive their superior performance remain unclear. Herein, we revealed the molecular OER mechanism and the structure-intermediate-performance relationship of OER on a phosphorus-doped nickel-iron nanocatalyst (NiFeP). NiFeP exhibited exceptional activity and stability with an overpotential of only 210 mV at 10 mA cm in 1 M KOH and a cell voltage of 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China. Electronic address:
The enhancement of catalytic activity can be achieved by removing non-active components from the surface of catalyst materials, thereby increasing the accessibility of active sites. In this study, an electrically driven method is described for the removal of non-active phosphorus (P) to optimize the surface composition of iron-nickel phosphide (denoted as P-O-NFF), resulting in the exposure of more active Fe-Ni sites for oxygen evolution reaction (OER). The optimized P-O-NFF electrode exhibits exceptional OER catalytic activity, with an overpotential of 217 mV at 10 mA cm.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Advanced Renewable Materials Lab, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
Glucose electrocatalytic-conversion reaction (GCR) is a promising anode reaction to replace the slow oxygen evolution reaction (OER), thus promoting the development of hydrogen production by electrochemical water splitting. Herein, NiFe-based metal-organic framework (MOF) is used as a precursor to prepare W-doped nickel-iron phosphide (W-NiFeP) nanosheet arrays by ion exchange and phosphorylation, which exhibit a high electrocatalytic activity toward the hydrogen evolution reaction (HER), featuring an overpotential of only -179 mV to achieve the current density of 100 mA cm in alkaline media. Notably, electrochemical activation of W-NiFeP facilitates the in situ formation of phosphate groups producing W,P-NiFeOOH, which, in conjunction with the W co-doped amorphous layers, leads to a high electrocatalytic performance toward GCR, due to enhanced proton transfer and adsorption of reaction intermediates, as confirmed in experimental and theoretical studies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China.
Optimizing the composition and structure of nanocatalysts is an efficient approach to achieving the top electrocatalytic performance. However, the construction of hollow nanocomposites composed of metal phosphides and highly conductive carbon to promote the electrocatalytic performance of metal phosphide-based catalysts is rarely reported. Herein, a CoFeP/C nanobox nanocomposite consisting of Co-Fe mixed-metal phosphides and N-doped carbon was successfully fabricated through an ion-exchange phosphidation strategy derived from ZIF-67 nanocubes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!