A novel elastic scaffold that simulates the deformability of annulus fibrosus (AF) and has good biocompatibility was developed. The scaffold was formed of a malic acid-based polyester poly(1,8-octanediol malate) (POM), which was synthesized by direct polycondensation. The tensile strength of POM gradually increased with the extension of the polymerization time, while the degradation rate decreased. Rat AF cells proliferated on the POM films and maintained their phenotype. The 3D scaffold also supported the growth of the AF cells, as confirmed by Safranin-O and type II collagen staining. POM also demonstrated a good biocompatibility in an in vivo foreign body response assay, an important prerequisite for tissue engineering applications. This study suggests that elastic POM scaffold may be an ideal candidate for AF tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.200700053DOI Listing

Publication Analysis

Top Keywords

poly18-octanediol malate
8
annulus fibrosus
8
good biocompatibility
8
tissue engineering
8
pom
5
novel biodegradable
4
biodegradable poly18-octanediol
4
malate annulus
4
fibrosus regeneration
4
regeneration novel
4

Similar Publications

Energy metabolism, antioxidant defense system, metal transport, and ion homeostasis are key contributors to Cd tolerance in SSSL derived from wild rice.

J Hazard Mater

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74).

View Article and Find Full Text PDF

Planting aluminum-tolerant legume green manure is a cost-effective and sustainable method to increase soil fertility as well as decrease Al toxicity in acidic soils. By analyzing the relative root elongation of seven legume green manure species, common vetch ( L.) was identified as an Al-resistant species.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Mechanical Properties and Decomposition Behavior of Compression Moldable Poly(Malic Acid)/-Tricalcium Phosphate Hybrid Materials.

Polymers (Basel)

January 2025

Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.

Calcified tissues in living organisms, such as bone, dentin, and enamel, often require surgical intervention for treatment. However, advances in regenerative medicine have increased the demand for materials to assist in regenerating these tissues. Among the various forms of calcium phosphate (CaP), tricalcium phosphate (TCP)-particularly its α-TCP form-stands out due to its high solubility and efficient calcium release, making it a promising candidate for bone regeneration applications.

View Article and Find Full Text PDF

The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!