The coupling of the flow field-flow fractionation (FlFFF) to differential refractive index (DRI) and multiangle laser light scattering (LS) detectors is a powerful tool for characterizing charged polysaccharides such as alginate. However, the correct interpretation of the experimental results and extrapolation of meaningful molecular parameters by using an analytical tool with such a level of complexity requires improvement of the knowledge of the alginate behavior in the channel and careful optimization of the operating conditions. Therefore, the influence of the critical operating parameters, such as crossflow rate, carrier composition and concentration, and sample load, on the alginate retention was carefully evaluated. Combined information obtained simultaneously by DRI and LS detectors over the wide range of the crossflow rate, carrier liquid concentration, and injected amount, allowed to set the appropriate combination of optimal parameters. It was found that the crossflow rate of 0.25 mL/min, carrier solution containing 5x10(-2 )mol/L ammonium or sodium chloride, and 50-100 microg of injected sample mass were necessary to achieve complete separation and determination of the meaningful molecular characteristics. The values of the weight-average hydrodynamic radius (R(Hw)), radius of gyration (R(G)), and molar mass (M), obtained under the optimal conditions were in good agreement to those found for alginates in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.200700211 | DOI Listing |
Langmuir
January 2025
John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.
Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Electronic address:
The clogging of sieving pores due to the complex sewage system of mixed molecules and nanoparticles of different scales is a difficulty in the membrane-based separation process. When the holes are reduced to the point where they can repel small molecules in the contaminants, large-molecule contaminants can adsorb to the holes and decrease the permeability. A similar question remains in new promising graphene oxide (GO) membranes.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Frontier Research Centre, Songshan Lake Materials Laboratory, Dongguan, 523830, Guangdong, China.
Clinical and immunological assays of white blood cells (WBCs) in human peripheral blood are of significance for disease diagnosis and immunological studies. However, separating WBCs from blood with high recovery and high purity remains challenging. In this study, by incorporating a pair of linearly tapered filter arrays, a crossflow filtration-based microfluidic chip was designed and fabricated for separation of WBCs from blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!