Optimizing drug exposure to minimize selection of antibiotic resistance.

Clin Infect Dis

Antibiotic Research Unit, Department of Medical Sciences, Clinical Bacteriology and Infectious Diseases, Uppsala University, Uppsala, Sweden.

Published: September 2007

The worldwide increase in antibiotic resistance is a concern for public health. The fact that the choice of dose and treatment duration can affect the selection of antibiotic-resistant mutants is becoming more evident, and an increased number of studies have used pharmacodynamic models to describe the drug exposure and pharmacodynamic breakpoints needed to minimize and predict the development of resistance. However, there remains a lack of sufficient data, and future work is needed to fully characterize these target drug concentrations. More knowledge is also needed of drug pharmacodynamics versus bacteria with different resistance mutations and susceptibility levels. The dosing regimens should exhibit high efficacy not only against susceptible wild-type bacteria but, preferably, also against mutated bacteria that may exist in low numbers in "susceptible" populations. Thus, to prolong the life span of existing and new antibiotics, it is important that dosing regimens be carefully selected on the basis of pharmacokinetic and pharmacodynamic properties that prevent emergence of preexisting and newly formed mutants.

Download full-text PDF

Source
http://dx.doi.org/10.1086/519256DOI Listing

Publication Analysis

Top Keywords

drug exposure
8
antibiotic resistance
8
dosing regimens
8
optimizing drug
4
exposure minimize
4
minimize selection
4
selection antibiotic
4
resistance
4
resistance worldwide
4
worldwide increase
4

Similar Publications

Introduction: Therapeutic drug monitoring (TDM) in inflammatory rheumatic diseases (RMDs) is gaining interest. However, there are unresolved questions about the best practices for implementing TDM effectively in clinical settings.

Objective: The primary objective of this study was to evaluate whether early TDM of adalimumab predicts drug survival at 52 weeks in patients with RMDs.

View Article and Find Full Text PDF

Impact of hemoadsorption with CytoSorb® on meropenem and piperacillin exposure in critically ill patients in a post-CKRT setup: a single-center, retrospective data analysis.

Intensive Care Med Exp

January 2025

Freie Universität Berlin and Humboldt-Universität Zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.

Purpose: CytoSorb® (CS) adsorbent is a hemoadsorption filter for extracorporeal blood purification often integrated into continuous kidney replacement therapy (CKRT). It is primarily used in critically ill patients with sepsis and related conditions, including cytokine storms and systemic inflammatory responses. Up to now, there is no evidence nor recommendation for the use of CS filters in sepsis (22).

View Article and Find Full Text PDF

Substandard and falsified (SF) medical products are a serious health and economic concern that disproportionately impact low- and middle-income countries and marginalized groups. Public education campaigns are demand-side interventions that may reduce risk of SF exposure, but the effectiveness of such campaigns, and their likelihood of benefitting everybody, is unclear. Nationwide pilot risk communication campaigns, involving multiple media, were deployed in Ghana, Nigeria, Sierra Leone, Uganda in 2020-2021.

View Article and Find Full Text PDF

A 2024 Update on US FDA Implementation of Partial Area Under the Curve Into Bioavailability and Bioequivalence Assessments.

Clin Pharmacol Ther

January 2025

Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.

Comparisons of maximum drug concentration (C) and total area under the concentration vs. time curve (AUC) may be inadequate for bioavailability (BA)/bioequivalence (BE) assessments in cases where the shape of the pharmacokinetic (PK) profile of a drug impacts the clinical performance. In such cases, partial area under the concentration vs.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!