Download full-text PDF

Source
http://dx.doi.org/10.1007/s11259-007-0011-xDOI Listing

Publication Analysis

Top Keywords

development dna
4
dna extraction
4
extraction pcr
4
pcr amplification
4
amplification protocols
4
protocols detection
4
detection mycoplasma
4
mycoplasma bovis
4
bovis directly
4
directly milk
4

Similar Publications

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Background: While epidemiological data suggest a connection between atopic dermatitis (AD) and COVID-19, the molecular mechanisms underlying this relationship remain unclear.

Objective: To investigate whether COVID-19-related CpGs may contribute to AD development and whether this association is mediated through the regulation of specific genes' expression.

Methods: We combined Mendelian randomization and transcriptome analysis for data-driven explorations.

View Article and Find Full Text PDF

Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.

Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.

View Article and Find Full Text PDF

The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.

View Article and Find Full Text PDF

Cardiovascular complications in chronic active Epstein-Barr virus disease: a case report and literature review.

Front Pediatr

January 2025

Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), West China Institute of Women and Children's Health, Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, Department of Pediatrics, Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Cardiovascular involvement is a rare but severe complication of Epstein-Barr virus (EBV) infections. Patients with chronic active EBV (CAEBV) are at increased risk of developing cardiovascular complications and have a poor prognosis. Here, we report the rare case of a pediatric patient with CAEBV and EBV- hemophagocytic lymphohistiocytosis (HLH) complicated with a giant coronary artery aneurysm (CAA) and thrombosis, a giant Valsalva sinus aneurysm, and ascending aorta dilation seven years after the disease onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!