The bacterial type II topoisomerases DNA gyrase and topoisomerase IV are validated targets for clinically useful quinolone antimicrobial drugs. A significant limitation to widely utilized quinolone inhibitors is the emergence of drug-resistant bacteria due to an altered DNA gyrase. To address this problem, we have used structure-based molecular docking to identify novel drug-like small molecules that target sites distinct from those targeted by quinolone inhibitors. A chemical ligand database containing approximately 140,000 small molecules (molecular weight, <500) was molecularly docked onto two sites of Escherichia coli DNA gyrase targeting (i) a previously unexplored structural pocket formed at the dimer interface of subunit A and (ii) a small region of the ATP binding pocket on subunit B overlapping the site targeted by coumarin and cyclothialidine drugs. This approach identified several small-molecule compounds that inhibited the DNA supercoiling activity of purified E. coli DNA gyrase. These compounds are structurally unrelated to previously identified gyrase inhibitors and represent potential scaffolds for the optimization of novel antibacterial agents that act on fluoroquinolone-resistant strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2043263 | PMC |
http://dx.doi.org/10.1128/AAC.00392-07 | DOI Listing |
Chem Biodivers
January 2025
Matrusri Education Society, Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Hyderabad, INDIA.
In this work, we have adopted an easy route to synthesizing bis-1,2,3-triazole-based benzophenone compounds via a 1,3-dipolar cycloaddition reaction (Click Chemistry). All the target compounds achieved better yields though the microwave-assisted method than the conventional method. Target compounds structure were confirmed based on the IR, 1H NMR, 13C NMR and HR Mass analysis.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
Background/objectives: The alarming rise in antibiotic resistance necessitates the discovery of novel antimicrobial agents. This study aims to design, synthesize, and evaluate new benzofuran-pyrazole-based compounds for their antimicrobial, antioxidant, and anti-inflammatory properties.
Methods: New benzofuran-pyrazole hybrid molecules were synthesized using the Vilsmeier-Haach reaction and other chemical processes.
Pathogens
November 2024
The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Adelaide, SA 5005, Australia.
, an important cause of enzootic pneumonia in pigs in many countries, has recently been shown to exhibit reduced susceptibility to several antimicrobial classes. In the present study, a total of 185 pig lung tissue samples were collected from abattoirs in Australia, from which 21 isolates of were obtained. The antimicrobial resistance profile of the isolates was determined for 12 antimicrobials using minimum inhibitory concentration (MIC) testing, and a subset ( = 14) underwent whole-genome sequence analysis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
Globally, widespread tuberculosis is one of the acute problems of healthcare. Drug-resistant forms of tuberculosis require a personalized approach to treatment. Currently, rapid methods for detecting drug resistance of (MTB) to some antituberculosis drugs are often used and involve optical, electrochemical, or PCR-based assays.
View Article and Find Full Text PDFChem Biodivers
January 2025
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
Here, we report a synthesis of fluoroquinolones carrying a monoterpene moiety at the C7 position of aromatic structure. The minimal inhibitory concentrations of fluoroquinolone fused with trans-3-hydroxy-cis-myrtanylamine 18 against Staphylococcus aureus (MSSA isolates) were two- to eightfold lower compared to moxifloxacin, although fourfold higher against MRSA isolates. The fluoroquinolone fused with (-)-nopylamine 16 was four- to eightfold less active on MSSA compared to moxifloxacin, while had similar activity on MRSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!