Objective: Prolonged elevation of glucose can adversely affect beta-cell function. In vitro studies have linked glucose-induced beta-cell dysfunction to oxidative stress; however, whether oxidative stress plays a role in vivo is unclear. Therefore, our objective was to investigate the role of oxidative stress in an in vivo model of glucose-induced beta-cell dysfunction.

Research Design And Methods: Wistar rats were infused intravenously with glucose for 48 h to achieve 20 mmol/l hyperglycemia with/without co-infusion of one of the following antioxidants: taurine (2-amino ethanesulfonic acid) (TAU), an aldehyde scavenger; N-acetylcysteine (NAC), a precursor of glutathione; or tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) (TPO), a superoxide dismutase mimetic. This was followed by islet isolation or hyperglycemic clamp.

Results: A 48-h glucose infusion decreased glucose-stimulated insulin secretion (GSIS) and elevated reactive oxygen species (ROS), total superoxide, and mitochondrial superoxide in freshly isolated islets. TPO prevented the increase in total and mitochondrial superoxide and the beta-cell dysfunction induced by high glucose. However, TAU and NAC, despite completely normalizing H(2)DCF-DA (dihydro-dichlorofluorescein diacetate)-measured ROS, did not prevent the increase in superoxide and the decrease in beta-cell function induced by high glucose. TPO but not TAU also prevented beta-cell dysfunction induced by less extreme hyperglycemia (15 mmol/l) for a longer period of time (96 h). To further investigate whether TPO is effective in vivo, a hyperglycemic clamp was performed. Similar to the findings in isolated islets, prolonged glucose elevation (20 mmol/l for 48 h) decreased beta-cell function as assessed by the disposition index (insulin secretion adjusted for insulin sensitivity), and co-infusion of TPO with glucose completely restored beta-cell function.

Conclusions: These findings implicate superoxide generation in beta-cell dysfunction induced by prolonged hyperglycemia.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db07-0279DOI Listing

Publication Analysis

Top Keywords

beta-cell dysfunction
20
glucose-induced beta-cell
12
beta-cell function
12
oxidative stress
12
dysfunction induced
12
beta-cell
10
superoxide generation
8
insulin secretion
8
mitochondrial superoxide
8
isolated islets
8

Similar Publications

Introduction: Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3.

View Article and Find Full Text PDF

Aging negatively impacts central nervous system function; however, the cellular impact of aging in the peripheral nervous system remains poorly understood. Aged individuals are more likely to experience increased pain and slower recovery after trauma. Such injury can damage vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory dysfunction.

View Article and Find Full Text PDF

Chitinase 1 (CHIT1), as a chitin-specific hydrolase, significantly influences the progression of Alzheimer's disease (AD) through microglia-associated inflammation and amyloid beta (Aβ) plaque accumulation. However, the precise mechanism of CHIT1 action in AD remains uncertain. The effects of CHIT1 on cerebral blood flow (CBF), hippocampal volume, and cognitive function were investigated in APP/PS1 mice.

View Article and Find Full Text PDF

KIF9 Ameliorates Neuropathology and Cognitive Dysfunction by Promoting Macroautophagy in a Mouse Model of Alzheimer's Disease.

Aging Cell

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the elderly. The imbalance of protein production and degradation processes leads to the accumulation of misfolded and abnormally aggregated amyloid-beta (Aβ) in the extracellular space and forms senile plaques, which constitute one of the most critical pathological hallmarks of AD. KIF9, a member of the kinesin protein superfamily, mediates the anterograde transport of intracellular cargo along microtubules.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!