Co-existence of high levels of the PTEN protein with enhanced Akt activation in renal cell carcinoma.

Biochim Biophys Acta

Division of Nephrology, Department of Medicine, McMaster University, and Father Sean O'Sullivan Research Centre, St. Joseph's Hospital, 50 Charlton Ave East, Hamilton, ON, Canada L8N 4A6.

Published: October 2007

Recruiting Akt to the membrane-bound phosphatidylinositol (3,4,5) trisphosphate (PIP3) is required for Akt activation. While PI3 kinase (PI3K) produces PIP3, PTEN dephosphorylates the 3-position phosphate from PIP3, thereby directly inhibiting Akt activation. PTEN is the dominant PIP3 phosphatase, as knockdown of PTEN results in increases in Akt activation in mice. The PTEN tumor suppressor gene is frequently mutated in a variety of human cancers, consistent with an inverse correlation between levels of the PTEN protein and Akt activation. We have examined PTEN expression and Akt activation in 35 primary clear cell renal cell carcinomas RCCs (ccRCCs) and 9 papillary RCCs (pRCCs) and their respective non-tumor kidney tissues. The PTEN protein was reduced in 16 ccRCCs (16/35=45.7%) and 8 pRCCs (8/9=88.9%). In these RCCs, 25.0% (4/16) of ccRCCs and 25.0% (2/8) of pRCCs expressed elevated Akt activation. 19 ccRCCc (19/35=54.3%) expressed comparable or higher levels of PTEN. Of these ccRCCs, 31.6% (6/19) showed increases in Akt activation. As PTEN dominantly inhibits Akt activation, the coexistence of high levels of the PTEN protein with enhanced Akt activation suggests the existence of novel mechanisms which attenuate PTEN function in ccRCC. These mechanisms may reduce PTEN function or increase PIP3 production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2007.07.001DOI Listing

Publication Analysis

Top Keywords

akt activation
40
levels pten
16
pten protein
16
pten
13
akt
11
activation
10
high levels
8
protein enhanced
8
enhanced akt
8
renal cell
8

Similar Publications

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

β-eudesmol inhibits cell growth and enhances cell chemosensitivity of NPC through targeting FGF1/FGFR signaling.

Oral Oncol

January 2025

Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China. Electronic address:

Background: Chemoresistance is one ofthe main challenges for advanced NPCtreatment.We previouslyproved LHX2 transcriptionally regulates FGF1 and promotes cancer progression through activating FGF1/FGFR axis,which prompted us toexplore the potential inhibitors for FGFR to improve the therapy response.

Methods: RT-qPCR, immunohistochemistry, western blot assayand immunofluorescencewere applied to verify the gene expression levels.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!