Lysine acetylation was first discovered as a post-translational modification of histones and has long been considered as a direct regulator of chromatin structure and function. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are the enzymes involved in this modification and they were thought to act as critical gene silencers or activators. Further investigations indicated that lysine acetylation can also occur in non-histone proteins and pointed to HATs and HDACs as multifunctional factors, acting not only on transcription but also on a variety of other cellular processes. One of these processes is the regulation of protein stability. Indeed, at least four independent HATs, namely CBP, p300, PCAF and TAF1, and one HDAC, HDAC6, possess intrinsic ubiquitin-linked functions in addition to their regular HAT/HDAC activities. Furthermore HATs and HDACs can be found in multi-subunit complexes with enzymes of the ubiquitination machinery. Moreover, lysine acetylation itself was found to directly or indirectly affect protein stability. These observations reveal therefore a tight link between protein lysine acetylation and ubiquitination and designate the acetylation machinery as a determinant element in the control of cellular proteolytic activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2007.06.009 | DOI Listing |
Diabetol Metab Syndr
January 2025
The Centre for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
Background: Adipose tissue plays a critical role in the development of metabolically unhealthy obesity (MUO), with distinct adipose depots demonstrating functional differences. This study aimed to investigate the unique characteristics of subcutaneous (SA) and visceral adipose tissue (VA) in MUO.
Methods: Paired omental VA and abdominal SA samples were obtained from four male patients with MUO and subjected to Four-Dimensional Data Independent Acquisition (4D-DIA) proteomic and lysine acetylation (Kac) analyses.
Aging Cell
January 2025
Molecular Biology and Genetics Unit, Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.
View Article and Find Full Text PDFCell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFCancer Lett
January 2025
Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:
Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.
View Article and Find Full Text PDFPathogens
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!