Purpose: To evaluate and compare the proinflammatory and apoptotic effects of lipopolysaccharide (LPS) in three rabbit corneal injury models using a new in vivo confocal microscope (IVCM) and immunohistological techniques.
Methods: Adult male New Zealand albino rabbits were used in this study. Three corneal models were tested: corneal incision, corneal epithelium scraping, and corneal suture. Ten rabbits were used in each model and these three groups were subdivided into two subgroups: with or without LPS instillation (with saline used as control) for eight days. Rabbit corneas were analyzed in vivo by using the Rostock Cornea Module (RCM) of the Heidelberg Retina Tomograph (HRT)-II. Immunohistology was used to evaluate inflammatory, proliferating, and apoptotic cells in the different injury models following saline or LPS instillations.
Results: Clinically, LPS induced earlier and higher levels of inflammation and corneal neovascularization in eyes subjected to scraping and suturing compared to saline. The RCM/HRT successfully presented high-quality images allowing analysis of all pathological corneal layers. Compared to groups receiving saline, LPS caused earlier and greater surface and stromal inflammatory infiltration as well as neovascularization. Immunohistology was correlated with in vivo findings and confirmed these results by showing greater infiltration of KI 67+ proliferating cells, TUNEL+ apoptotic cells, and TNF-alpha+, TNFR1+, TLR4/MD2+, ICAM-1+, RLA-DR+, CD11b+, and CD11c+ inflammatory cells, in eyes receiving LPS compared to those receiving saline.
Conclusions: These results indicate that in various models of corneal injury, LPS is a potent proinflammatory stimulus and its exposure has major effects on determinants of inflammation, angiogenesis, and apoptosis.
Download full-text PDF |
Source |
---|
J Control Release
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China. Electronic address:
Severe corneal injuries can cause visual impairment even blindness. Surgically stitching or implanting biomaterials have been developed, but their implementation requires professional surgeons, failing to address the immediate need of medical treatment. The pressing challenge lies in developing multifunctional biomaterials that enable self-management of corneal injuries.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030 China. Electronic address:
Purpose: To explore the function of cyclopamine in corneal neovascularization and subsequent fibrosis after cornea alkali-burn injury.
Methods: In vivo, mice cornea were injured by NaOH, and then treated with cyclopamine, clodronate liposomes (CLO-LPS), and vehicle of cyclopamine separately by subconjunctival injections. Clinical features were observed and pathological characteristics were examined.
Invest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFCureus
December 2024
Department of Ophthalmology, Hospital University Kebangsaan Malaysia, Kuala Lumpur, MYS.
We report a rare case of a missed intracavernous internal carotid artery dissecting aneurysm occurring as a complication of the base of skull fracture with severe brain injury causing acute cavernous sinus syndrome with permanent vision loss. A 31-year-old Myanmar lady had an alleged motor vehicle accident and suffered severe traumatic brain injury with multiple intracranial bleeds, multiple facial bone and base of skull fractures, and limb fractures. At one week post-trauma, she had severe right eye proptosis with vision loss, ophthalmoplegia, chemosis, and high intraocular pressure.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.
Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!