Cytochrome P450 MoxA (P450moxA) from a rare actinomycete Nonomuraea recticatena belongs to the CYP105 family and exhibits remarkably broad substrate specificity. Here, we demonstrate that P450moxA acts on several luciferin derivatives, which were originally identified as substrates of the human microsomal P450s. We also describe the crystal structure of P450moxA in substrate-free form. Structural comparison with various bacterial and human microsomal P450s reveals that the P450moxA structure is most closely related to that of the fungal nitric oxide reductase P450nor (CYP55A1). Final refined model of P450moxA comprises almost all the residues, including the "BC-loop" and "FG-loop" regions pivotal for substrate recognition, and the current structure thus defines a well-ordered substrate-binding pocket. Clear electron density map reveals that the MES molecule is bound to the substrate-binding site, and the sixth coordination position of the heme iron is not occupied by a water molecule, probably due to the presence of MES molecule in the vicinity of the heme. The unexpected binding of the MES molecule might reflect the ability of P450moxA to accommodate a broad range of structurally diverse compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2007.07.062 | DOI Listing |
Int J Mol Sci
January 2025
Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany.
A new method for the precise semiempirical determination of the basic parameters (structural parameters and parameters of the intramolecular potential energy surface, PES) of a molecule on the basis of highly accurate experimental data from the microwave and submillimeter-wave regions is suggested. The options and advantages of this method in comparison with the other methods of molecular PES determination are discussed using a diatomic molecule as an appropriate illustration. The HCl molecule is exploited as a suitable example.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China. Electronic address:
Maggots contain various kinds of polysaccharides and recent studies mostly concentrated on their anti-inflammatory functions. While the molecule mechanisms related to the polysaccharides inhibiting carcinogenesis remains unclear. Here we characterized the polysaccharides extracted from maggot (MEs) determining their anti-colon cancer potentials.
View Article and Find Full Text PDFbioRxiv
December 2024
Venatorx Pharmaceuticals, Inc., Malvern, PA, USA.
β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.
View Article and Find Full Text PDFDalton Trans
December 2024
Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt, Main, Germany.
Aluminum-doped polycyclic aromatic hydrocarbons (PAHs) are underexplored despite the broad applications of boron-containing PAHs in areas such as catalysis and optoelectronics. We disclose the donor-free, sterically unprotected 9-methyl-9-aluminafluorene (Me-AlFlu; 2), synthesized by heating a 9,9-dimethyl-9-stannafluorene and AlMe in hexanes. The compound is a dimer, (2), with -positioned Al substituents in the solid state.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) UNIST-gil 50, Ulsan, 44919, Republic of Korea.
The photovoltaic performance of inverted perovskite solar cells (PSCs) relies on effectively managing the interface between the hole extraction layer and the light-absorbing perovskite layer. In this study, we have synthesised (4-(3,6-bis(methylthio)-9H-carbazol-9-yl)butyl)phosphonic acid (MeS-4PACz), which forms a self-assembled monolayer (SAM) on the fluorine-doped tin oxide (FTO) electrode. The molecule's methylthio substituents generate a favourable interfacial dipole moment and interact with the perovskite layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!