We have developed a simple quantitative method for specific nucleic acid sequences without using calibration curves. This method is based on the combined use of competitive polymerase chain reaction (PCR) and fluorescence quenching. We amplified a gene of interest (target) from DNA samples and an internal standard (competitor) with a sequence-specific fluorescent probe using PCR and measured the fluorescence intensities before and after PCR. The fluorescence of the probe is quenched on hybridization with the target by guanine bases, whereas the fluorescence is not quenched on hybridization with the competitor. Therefore, quench rate (i.e., fluorescence intensity after PCR divided by fluorescence intensity before PCR) is always proportional to the ratio of the target to the competitor. Consequently, we can calculate the ratio from quench rate without using a calibration curve and then calculate the initial copy number of the target from the ratio and the initial copy number of the competitor. We successfully quantified the copy number of a recombinant DNA of genetically modified (GM) soybean and estimated the GM soybean contents. This method will be particularly useful for rapid field tests of the specific gene contamination in samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2007.06.047 | DOI Listing |
Chembiochem
January 2025
Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.
Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.
View Article and Find Full Text PDFGenome Med
January 2025
Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
Background: Despite extensive analysis, the dynamic changes in prostate epithelial cell states during tissue homeostasis as well as tumor initiation and progression have been poorly characterized. However, recent advances in single-cell RNA-sequencing (scRNA-seq) technology have greatly facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate.
Methods: We have performed meta-analyses of new and previously published scRNA-seq datasets for mouse and human prostate tissues to identify and compare cell populations across datasets in a uniform manner.
Cancer Cell Int
January 2025
Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
Background: The prognosis of a plasma cell neoplasm (PCN) varies depending on the presence of genetic abnormalities. However, detecting sensitive genetic mutations poses challenges due to the heterogeneous nature of the cell population in bone marrow aspiration. The established gold standard for cell sorting is fluorescence-activated cell sorting (FACS), which is associated with lengthy processing times, substantial cell quantities, and expensive equipment.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Public Health and Primary Care, Leiden University Medical Centre, Hippocratespad 21, Leiden, Netherlands.
Background: eHealth literacy (eHL) is positively associated with health-related behaviors and outcomes. Previous eHL studies primarily collected data from online users and seldom focused on the general population in low- and middle-income countries (LMIC). Additionally, knowledge about factors that affect eHL is limited.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.
Soybean cyst nematode (SCN, ) is a devastating pest affecting soybean production worldwide. Host resistance is one of the primary practices used to manage SCN. The locus contributes to the strong and effective SCN resistance, with resistance levels predominantly governed by copy number variations (CNVs) and, to lesser extent, sequence variations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!