A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The blockade of K(+)-ATP channels has neuroprotective effects in an in vitro model of brain ischemia. | LitMetric

The blockade of K(+)-ATP channels has neuroprotective effects in an in vitro model of brain ischemia.

Int Rev Neurobiol

Department of Experimental Neurology, S. Lucia Foundation IRCCS, Rome, Italy.

Published: September 2007

There is a common belief that the opening of K(+)-ATP channels during an ischemic episode has protective effects on neuronal functions by inducing a reduction in energy consumption. However, recent studies have also proposed that activation of these channels might have deleterious effects on cell's survival possibly after a stroke or during long-lasting neurodegenerative processes. Considering these contrasting results, we have used a hippocampal in vitro slice preparation in order to investigate the possible effects of K(+)-ATP channel blockers on the electrophysiological and morphological changes induced by a transient episode of ischemia (oxygen and glucose deprivation) on CA1 pyramidal neurons. Therefore, we found that tolbutamide and glibenclamide, both nonselective K(+)-ATP channel blockers, produce neuroprotective effects against in vitro ischemia. Interestingly, the mitochondrial K(+)-ATP channel blocker 5-hydroxydecanoate and various K(+) channel blockers did not exert neuroprotection. Our results are consistent with the concept that a decreased activity of the plasmalemmal K(+)-ATP conductances may have a protective effect during episodes of transient cerebral ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0074-7742(07)82021-6DOI Listing

Publication Analysis

Top Keywords

k+-atp channel
12
channel blockers
12
k+-atp channels
8
neuroprotective effects
8
effects vitro
8
effects
5
k+-atp
5
blockade k+-atp
4
channels neuroprotective
4
vitro model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!