A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evidence to implicate early modulation of interleukin-1beta expression in the neuroprotection afforded by 17beta-estradiol in male rats undergone transient middle cerebral artery occlusion. | LitMetric

Neuroprotection exerted by 17beta-estradiol (17beta-E(2)) has been widely investigated in animal models of acute cerebral ischemia. Estrogens interact with intracellular receptors (ERalpha and ERbeta) to modulate the transcription of target genes, including those implicated in neuronal survival. Neuroprotection may also occur via interaction with ER-like membrane receptors mediating rapid, non-genomic, actions or via receptor-independent mechanisms. There is also evidence that blockade of inflammatory factors may represent an important mechanism involved in estrogenic neuroprotection. Here we investigate whether reduced brain damage by acute pharmacological treatment with 17beta-E(2) in male rats subjected to transient (2h) middle cerebral artery occlusion (tMCAo) involves modulation of interleukin-1beta (IL-1beta), a proinflammatory cytokine strongly implicated in the pathophysiology of ischemic stroke. Administration of 17beta-E(2) (0.2mg/kg, i.p., 1h before tMCAo) results in significant reduction of brain infarct volume, and this is reverted by the ER antagonist ICI 182,780 (0.25mg/kg, i.p.) administered 1h before 17beta-E(2). Two hours MCAo followed by 2-h reperfusion results in a significant, threefold increase of IL-1beta levels in the cortical tissue ipsilateral to the ischemic damage. Interestingly, a pretreatment with a neuroprotective dose of 17beta-E(2) attenuates the cytokine elevation and this appears to occur through ER activation. In addition, neuroprotection by 17beta-E(2) is accompanied by reduced cytochrome c translocation both in the striatum and in the cortex as revealed by Western blotting 3h after reperfusion. In conclusion, we report the original observation that neuroprotection exerted by 17beta-E(2) in a rat model of transient focal brain ischemia is accompanied by reduced cytochrome c translocation to the cytosol and involves early modulation of IL-1beta production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0074-7742(07)82019-8DOI Listing

Publication Analysis

Top Keywords

early modulation
8
modulation interleukin-1beta
8
male rats
8
transient middle
8
middle cerebral
8
cerebral artery
8
artery occlusion
8
neuroprotection exerted
8
accompanied reduced
8
reduced cytochrome
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!