Systematics of the first 2+ excitation with the Gogny interaction.

Phys Rev Lett

Department of Physics and Institute of Nuclear Theory, Box 351560, University of Washington, Seattle, Washington 98915, USA.

Published: July 2007

We report the first comprehensive calculations of 2(+) excitations with a microscopic theory applicable to over 90% of the known nuclei. The theory uses a quantal collective Hamiltonian in five dimensions. The only parameters in theory are those of the finite-range, density-dependent Gogny D1S interaction. The following properties of the lowest 2(+) excitations are calculated: excitation energy, reduced transition probability, and spectroscopic quadrupole moment. We find that the theory is very reliable to classify the nuclei by shape. For deformed nuclei, average excitation energies and transition quadrupole moments are within 5% of the experimental values, and the dispersion about the averages are roughly 20% and 10%, respectively. Including all nuclei in the performance evaluation, the average transition quadrupole moment is 11% too high and the average energy is 13% too high.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.99.032502DOI Listing

Publication Analysis

Top Keywords

quadrupole moment
8
transition quadrupole
8
systematics excitation
4
excitation gogny
4
gogny interaction
4
interaction report
4
report comprehensive
4
comprehensive calculations
4
calculations excitations
4
excitations microscopic
4

Similar Publications

Ab initio calculations of electric field gradients (EFGs) in molecular crystals have advanced significantly due to the gauge including projector augmented wave (GIPAW) formalism, which accounts for the infinite periodicity in crystals. However, theoretical accuracies still lag behind experimental ones, making it challenging to distinguish experimentally distinguishable similar structures, a deficiency largely attributed to the limitation of GIPAW codes to generalized gradient approximation (GGA) density functional theory (DFT) functionals. In this study, we investigate whether hybrid DFT functionals can enhance the EFG calculation accuracy and the associated geometry optimization.

View Article and Find Full Text PDF
Article Synopsis
  • The study used a hybrid B3LYP version of Density Functional Theory to analyze the properties of mustard-type cancer drugs, melphalan and bendamustine, in water, focusing on their geometry, vibrational characteristics, and various electrical properties.
  • Findings showed that these drugs have low ionization energies, indicating significant antioxidant potential, with melphalan's zwitterionic form being more stable in water compared to bendamustine's.
  • Advanced calculations using the DLPNO-CCSD(T) method confirmed that the canonical form of bendamustine is more stable in water than its zwitterionic counterpart, along with noting particularly high dipole moments for some structures.
View Article and Find Full Text PDF

Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 Cl channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. Here, we implement the fully polarizable force field AMOEBA in MD simulations on different conformations of hBest1.

View Article and Find Full Text PDF

Aromatic organometallic complexes, such as ferrocene and the "inverse sandwich complex" [NaCp], are stabilized via charge-transfer (C-T) interactions and cation-π interactions (i.e., charge-induced dipole and charge-quadrupole interactions).

View Article and Find Full Text PDF

Reduced Radial Electric Quadrupole Moment Function for Diatomic Molecules.

J Chem Theory Comput

December 2024

Institute of Organic Chemistry and Biochemistry, p.r.i., Czech Academy of Sciences, Flemingovo nám. 2 Prague 6, Praha 166 10, Czechia.

The prospect of constructing global electric quadrupole moment functions (EQMFs) of diatomic molecules by morphing their theoretical approximants within the framework of the reduced radial curve (RRC) approach is explored by performing model calculations for the ground electronic states of H and HF. The reduced quadrupole moment curves probed, constructed for a set of differently accurate theoretical EQMFs, coincide with their best many-parameter analytic counterparts so closely that they can be used as their accurate few-parameter representations. No other such functional representation is available in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!