The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the microp atom was obtained from the difference between the micro(-) disappearance rate in hydrogen and the world average for the micro(+) decay rate, yielding Lambda(S)=725.0+/-17.4 s(-1), from which the induced pseudoscalar coupling of the nucleon, g(P)(q(2)=-0.88m(2)(micro))=7.3+/-1.1, is extracted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.99.032002 | DOI Listing |
J Mater Chem A Mater
December 2024
Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
Ammonia (NH) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO each year. Efforts to produce green NH are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal-organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH.
View Article and Find Full Text PDFAppl Phys A Mater Sci Process
November 2024
Haute Ecole Arc Conservation-Restauration, HES-SO University of Applied Sciences and Arts Western Switzerland, Espace de L'Europe 11, 2000 Neuchâtel, Switzerland.
This study presents a preliminary examination of the effects of environment changes post-excavation on heavily corroded archaeological Roman iron nails using neutron tomography and image registration techniques. Roman nails were exposed to either a high relative humidity environment, or fast thermal drying as primary experiments to show the power of this imaging technique to monitor and quantify the structural changes of corroded metal artifacts. This research employed a series of pre- and post-treatment tomography acquisitions (time-series) complemented by advanced image registration methods.
View Article and Find Full Text PDFNat Mater
November 2024
Department of Chemistry, University of Manchester, Manchester, UK.
Capture of trace benzene is an important and challenging task. Metal-organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, TiO(OH)(BDC) where HBDC is 1,4-benzenedicarboxylic acid).
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Physical Chemistry 1, Lund University, Lund SE-22100, Sweden.
In this study, we report the degradation of smooth and rough lipopolysaccharides (LPS) from Gram-negative bacteria and of lipoteichoic acid (LTA) from Gram-positive bacteria by peptide-coated TiO nanoparticles (TiO NPs). While bare TiO NPs displayed minor binding to both LPS and LTA, coating TiO NPs with the antimicrobial peptide LL-37 dramatically increased the level of binding to both LPS and LTA, decorating these uniformly. Importantly, peptide coating did not suppress reactive oxygen species generation of TiO NPs; hence, UV illumination triggered pronounced degradation of LPS and LTA by peptide-coated TiO NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!