We demonstrate control of the electron number down to the last electron in tunable few-electron quantum dots defined in catalytically grown InAs nanowires. Using low temperature transport spectroscopy in the Coulomb blockade regime, we propose a method to directly determine the magnitude of the spin-orbit interaction in a two-electron artificial atom with strong spin-orbit coupling. Because of a large effective g factor |g(*)|=8+/-1, the transition from a singlet S to a triplet T+ ground state with increasing magnetic field is dominated by the Zeeman energy rather than by orbital effects. We find that the spin-orbit coupling mixes the T+ and S states and thus induces an avoided crossing with magnitude Delta(SO)=0.25+/-0.05 meV. This allows us to calculate the spin-orbit length lambda(SO) approximately 127 nm in such systems using a simple model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.98.266801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!