Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits.

Phys Rev E Stat Nonlin Soft Matter Phys

Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, C1428EHA Buenos Aires, Argentina.

Published: July 2007

Phase resonances in transmission compound structures with subwavelength slits produce sharp dips in the transmission response. For all equal slits, the wavelengths of these sharp transmission minima can be varied by changing the width or the length of all the slits. In this paper we show that the width of the dip, i.e., the frequency range of minimum transmittance, can be controlled by making at least one slit different from the rest within a compound unit cell. In particular, we investigate the effect that a change in the dielectric filling, or in the length of a single slit, produces in the transmission response. We also analyze the scan angle behavior of these structures by means of band diagrams and compare them with previous results for all-equal slit structures.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.76.016604DOI Listing

Publication Analysis

Top Keywords

compound structures
8
structures subwavelength
8
subwavelength slits
8
transmission response
8
transmission
5
bandwidth control
4
control forbidden
4
forbidden transmission
4
transmission gaps
4
gaps compound
4

Similar Publications

Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role.

View Article and Find Full Text PDF

Insights into the adsorption mechanisms of VOCs molecules on non-oxidized and oxidized SnO (110) monolayer: DFT analysis.

J Mol Model

January 2025

Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.

Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.

View Article and Find Full Text PDF

The synthesis of chiral tetrahydroquinolines (THQs) has garnered significant interest from medicinal chemists due to their frequent presence as pharmacophores in bioactive compounds. While existing synthetic methods have primarily focused on THQs with single or multiple endocyclic chiral centers, the selective construction of THQs with both and cyclic chiral centers remains a significant challenge that requires further development. This study introduces a dynamic kinetic resolution (DKR)-based transfer hydrogenation of racemic 2-substituted quinolines, which yields structurally novel chiral THQs with consecutive and cyclic chiral centers in excellent yields and stereoselectivities (59 examples, with generally >20:1 dr and >90% ee, up to three consecutive stereocenters).

View Article and Find Full Text PDF

Design, Synthesis, and SAR of Covalent KIT and PDGFRA Inhibitors─Exploring Their Potential in Targeting GIST.

J Med Chem

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany.

Gastrointestinal stromal tumors (GIST), driven by KIT and PDGFRA mutations, are the most common mesenchymal tumors of the gastrointestinal tract. Although tyrosine kinase inhibitors (TKIs) have advanced treatment, resistance mutations and off-target toxicity limit their efficacy. This study develops covalent TKIs targeting drug-resistant GIST through structure-based design, synthesis, and biological evaluation.

View Article and Find Full Text PDF

Synthesis and characterization of heterotrimetallic Mg-Ni-Mg complexes with amidinato ligands.

Dalton Trans

January 2025

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

Treatment of amidinato-based magnesium ethyl compounds LMgEt [L = PrPNC(Bu)NAr; Ar = 2,6-PrCH (La) or 2,6-(PhCH)-4-Pr-(CH) (Lb)] with Ni(COD) (COD: 1,5-cyclooctadiene) afforded heterotrimetallic Mg-Ni-Mg complexes [(LMg)Ni(CH)] through β-H elimination. These complexes exhibit approximately linear Mg-Ni-Mg linkage with the central nickel arranged in a planar configuration; the Ni(CH) unit can be considered as nickela-bis-cyclopropane. Reaction of [(LMg)Ni(CH)] with tetrahydrofuran (THF) gave a coordination product [(LMg·THF)Ni(CH)], in which the central structure remained intact and THF coordinated to two magnesium atoms respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!