A theoretical framework for predicting low frequency Raman vibrational spectra of viral capsids is presented and applied to the M13 bacteriophage. The method uses a continuum elastic theory for the vibrational modes and a bond-charge polarizability model of an amorphous material to roughly predict the Raman intensities. Comparison is made to experimental results for the M13 bacteriophage virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.76.011906 | DOI Listing |
Microb Cell Fact
January 2025
Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
Background: Ecotoxicology is essential for the evaluation and comprehension of the effects of emergency pollutants (EP) such as heavy metal ions on the natural environment. EPs pose a substantial threat to the health of humans and the proper functioning of the global ecosystem. The primary concern is the exposure of humans and animals to heavy metal ions through contaminated water.
View Article and Find Full Text PDFFood Chem
December 2024
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Food allergy is increasingly prevalent and poses notable health risks, which underscores the urgent need to develop reliable and sensitive detection methods for effective identification of food allergens. This study aims to address the limitations of existing methods by developing an immunoassay utilizing bacteriophage/carbon dots (CDs)@silica core-shell nanospheres. Two CDs with different emission wavelengths (513 nm for Green CDs, 645 nm for Red CDs) were synthesized for signal development and amplification.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362400, China.
Influenza epidemics remain a global public health challenge. Vaccination with nucleic acid-based vaccines, which trigger strong cellular and humoral immune responses, represents a promising approach for preventing virus infection. However, its effectiveness relies on efficient delivery and an immunoadjuvant.
View Article and Find Full Text PDFNanoscale Horiz
December 2024
Department of Physics, Paderborn University, 33098 Paderborn, Germany.
Realizing plasmonic nanogaps with a refractive index ( = 1) environment in metallic nanoparticle (NP) structures is highly attractive for a wide range of applications. So far in self-assembly-based approaches, without surface functionalization of metallic NPs, achieving such extremely small nanogaps is challenging. Surface functionalization introduces changes in the refractive index at nanogaps, which in turn deteriorates the desired plasmonic properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
GraPhage13 aerogels (GPAs) are ultralow density, porous structures fabricated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. Given GPA's high surface area and extensive porous network, properties typically associated with highly adsorbent materials, it is essential to characterize its sorption capabilities, with a focus on unlocking its potential for advanced applications in areas such as biomedical sensing and environmental monitoring. Herein, the water, ethanol and acetone sorption properties of GPA were explored using dynamic vapor sorption (DVS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!