We report on strong nonuniformities in target heating with intense, laser-produced proton beams. The observed inhomogeneity in energy deposition can strongly perturb equation of state (EOS) measurements with laser-accelerated ions which are planned in several laboratories. Interferometric measurements of the target expansion show different expansion velocities on the front and rear surfaces, indicating a strong difference in local temperature. The nonuniformity indicates at an additional heating mechanism, which seems to originate from electrons in the keV range.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.75.065401DOI Listing

Publication Analysis

Top Keywords

energy deposition
8
target heating
8
direct evidence
4
evidence inhomogeneous
4
inhomogeneous energy
4
deposition target
4
heating laser-produced
4
laser-produced ion
4
ion beams
4
beams report
4

Similar Publications

Decoding the suppressing effects of Pluronic triblock copolymers on copper electrodeposition.

J Colloid Interface Sci

April 2025

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:

Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.

View Article and Find Full Text PDF

Migration of vanadium oxide nanoparticles in saturated porous media.

J Hazard Mater

January 2025

MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.

Vanadium oxides nanoparticles (VO-NPs) as emerging functional materials are widely applied in high-technology industries. However, their environmental behaviors remain largely known. In this study, the migration of three common VO-NPs (VO VO, and VO) in saturated porous media has been investigated.

View Article and Find Full Text PDF

In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!