We propose a surface reaction model for NO reduction with NH3 on a Pt(100) single crystal catalyst surface and we explore it by carrying out Monte Carlo simulations. Our model includes experimentally observed realistic features such as adsorbate-induced surface phase transition, structure-dependent sticking coefficients and reactivity, desorption probabilities, and surface diffusion of adsorbed species. We discuss similarities found while comparing the available experimental data and our model as reactant ratio and temperature vary. Simulations qualitatively reproduce the kinetic oscillations observed in reaction rates and surface coverages. Also, the essential role of the adsorbate-induced phase transition regarding the appearance of kinetic oscillations is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.75.061121 | DOI Listing |
Sci Total Environ
January 2025
School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.
Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
Conversion of nitrogen (N) to ammonia (NH) is a significant process that occurs in environment and in the field of chemistry, but the traditional NH synthesis method requires high energy and pollutes the environment. In this work, the charge, orbital and spin order of the single-atom Fe loaded on heteroatom (X) doped-MoCS (X = B, N, O, F, P and Se) and its synergistic effect on electrochemical nitrogen reduction reaction (eNRR) were investigated using well-defined density functional theory (DFT) calculations. Results revealed that the X-element modified the charge loss capability of Fe atoms and thereby introduced a net spin through heteroatom doping, resulting in the magnetic moment modulation of Fe.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Nowadays, it is challenging to achieve SO-tolerant environmental catalysis for NO reduction because of the thermodynamically favorable transformation of reactive sites to inactive sulfate species in the presence of SO. Herein, we achieve enhanced low-temperature SO-tolerant NO reduction by manipulating the dynamic coordination environment of active sites. Engineered by coordination chemistry, SiO-CeO composite oxides with a short-range ordered Ce-O-Si structure were elaborately constructed on a TiO support.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Inner Mongolia University, College of Chemistry and Chemical Engineering, Hohhot 010021, P. R. China., 010021, Hohhot, CHINA.
Conversion of solar energy into value-added chemicals through photoelectrochemistry (PEC) holds great potential for advancing sustainable development but limits by high onset potential which affects energy conversion efficiencies. Herein, we utilized a CuPd cocatalyst-modified Sb2(S,Se)3 photocathode (CuPd/TSSS) to achieve an ultra-low onset potential of 0.83 VRHE for photoelectrochemical ammonia synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!